Skip to main content

A Python/C++ library for the analysis of Differential Dynamic Microscopy experiments

Project description

FastDDM

Python GitHub Actions PyPI Version Read the Docs License: GPL v3

FastDDM is a Python package for the analysis of microscopy image sequences using Differential Dynamic Microscopy on CPU and GPU. The features implemented are targeted at the experimental soft matter research community dealing with inert and active/biological samples.

Resources

Example scripts

These examples demonstrate some of the Python API.

Calculation of the image structure function and its azimuthal average:

import fastddm as fddm

file_names = [...]  # define here your list of image file names 
images = fddm.read_images(file_names)

pixel_size = 0.3    # um
frame_rate = 50     # frames per second
    
# compute image structure function and set experimental parameters
dqt = fddm.ddm(img_seq, range(1, len(img_seq)))
dqt.pixel_size = pixel_size
dqt.set_frame_rate(frame_rate)

# compute the azimuthal average
aa = fddm.azimuthal_average(dqt, bins=dqt.shape[-1] - 1, range=(0.0, dqt.ky[-1]))

Contributing to FastDDM

Contributions are welcome via pull requests after agreeing to the Contributors' Agreement. Please, refer to the Developers' section in the documentation.

Please, report bugs and suggest features via the issue tracker.

Citing FastDDM

Please, cite this publication in every work that uses FastDDM:

E. Lattuada, F. Krautgasser, F. Giavazzi, and R. Cerbino.
The Hitchhiker’s Guide to Differential Dynamic Microscopy.
(In preparation.)

License

FastDDM is available under the GNU GPL-3.0 license.

Acknowledgements

  • The fftw-3.3.10 and pybind11 2.10.0 libraries are included in the source tree.
  • This project was funded by the Austrian Science Fund (FWF), Grant Number M 3250-N.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastddm-0.3.10.tar.gz (42.6 MB view details)

Uploaded Source

Built Distributions

fastddm-0.3.10-cp312-cp312-win_amd64.whl (651.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastddm-0.3.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastddm-0.3.10-cp312-cp312-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastddm-0.3.10-cp312-cp312-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fastddm-0.3.10-cp311-cp311-win_amd64.whl (651.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastddm-0.3.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastddm-0.3.10-cp311-cp311-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastddm-0.3.10-cp311-cp311-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastddm-0.3.10-cp310-cp310-win_amd64.whl (648.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastddm-0.3.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastddm-0.3.10-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastddm-0.3.10-cp310-cp310-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastddm-0.3.10-cp39-cp39-win_amd64.whl (649.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastddm-0.3.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastddm-0.3.10-cp39-cp39-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastddm-0.3.10-cp39-cp39-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fastddm-0.3.10-cp38-cp38-win_amd64.whl (649.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastddm-0.3.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fastddm-0.3.10-cp38-cp38-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fastddm-0.3.10-cp38-cp38-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file fastddm-0.3.10.tar.gz.

File metadata

  • Download URL: fastddm-0.3.10.tar.gz
  • Upload date:
  • Size: 42.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for fastddm-0.3.10.tar.gz
Algorithm Hash digest
SHA256 a251f0c3ae73dcd76b20e984f673380680350c5b3a77027b499c65b56bf9814f
MD5 9b9f5e606cf7927347f1a11526800a97
BLAKE2b-256 743e843d70d1d20acad3f9a4722d976f7ba0f347841a3330b80d31ee470aaf54

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastddm-0.3.10-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 651.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for fastddm-0.3.10-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d24c01bdc76807600477d2dfd88a0782bfce3494d2b606b5ade8ddd61434f293
MD5 02bba283b622ed8aa983f053ae79adf8
BLAKE2b-256 208e1173ca893fc584ec56b26fb98fa864a5e48312a4304a9306cabdb336ccf2

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aeb74f837b004727154e264bbc545e42a42e7c2795a9e268d7ad19c6a9a14c2c
MD5 43e23b2380d95589eb1707b490c07bc2
BLAKE2b-256 b06bfa8b3cc260fc8ee6639ac3b0a20033c84c201659af0723234024861f3a86

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.10-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab2d21839fc8b08f867b875e723a6e43d534af29c0037cf527187dde7fd2a3dd
MD5 d5cd0dee4070e3d9ac849bb9d57194b6
BLAKE2b-256 7a93f49a28c8f02bb5e61c9875c7de90ccf3620a8be043f7eefe8dd264c724fb

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.10-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 954d87ca01527a67c99eefd1d585212b70af661166cd726dd8cb32b601359dfa
MD5 866afd2216b6da5f6cdaf9ed7c9cebbf
BLAKE2b-256 e10b8d7aa6b9707ac9143c49c903db6769dd419612b850f61d2c0f9d30c04d9e

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastddm-0.3.10-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 651.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for fastddm-0.3.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 342d4d059946d88b39ef427b3faa4bbd41c0a56207aced3cbaa353935111f85c
MD5 155a65bbea148a44a44cdc2187804967
BLAKE2b-256 cc7c274cf59c1574cec7295af6f97df59d9855967345ddb5af7e24ff245594b4

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 79dcc9d27ee7e6b1bd82e58a2fb147f68777e43fd4e71ad97666810bca3a96ee
MD5 895e5668bcdf76f7a7512ad9a337bf7c
BLAKE2b-256 c2de7184f9ec9e28c1f7674b94cbd062cf061cdc505b70f7e54f2a877362867f

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.10-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3cc7e7855f697fc3343c69e50e77860373f3948041c5daf3e4799c0b2881504e
MD5 7aa74e535329faaafec19bdaae9eee3a
BLAKE2b-256 5133ef9a1855996d7b0128101104c0c670edf1fb24cfa9de4d398f55efbbdddf

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.10-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a2e4145ba93e4b2219c514c2ce0ba26054c72c86b3094d696406c64b12743c92
MD5 309b9ec2ab1bab48b28ae4f6f5c61d78
BLAKE2b-256 ad64822f6112f15a868d7b1c3d64db3173343b40735aeab2007c76a2bd22e3a0

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastddm-0.3.10-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 648.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for fastddm-0.3.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 20cf064f460f535b0fc6d0e7a8c48997c77d2bf6f1fabd67f717c51b7d275289
MD5 3b9daf9d5df577b2a39a384d028df5fd
BLAKE2b-256 df98f067217871bd89876df81996eed9f3a2f73254154e821210ee15c5e91706

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8ed46a9924291e459dbc0cc9fd590d6bc1cd5d8cee0e58226de4ae50fa34a43
MD5 fae9180328bbc702cba9aa33b39023e4
BLAKE2b-256 484098819f4c18c99be2266dc8bc84598c33052b517b8fe5dde359af562346f6

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7e617e902b46a7d70d4603c5ed1dfc7bca487875c2ff65bdca196b539e17b141
MD5 56a6e9800fc5e1d04f0175e0366364fb
BLAKE2b-256 12061811601fd615f70b05d8b3cfd5860e0a4e6e45ca36ef72b613b33845fb62

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 88c81617b82285b757ff28e93b105dd3c99974895b2493a1120be73841aa2caa
MD5 c10b311265e4382129e0af7792d601b3
BLAKE2b-256 5a5b0bedefe119ffb560147db8638d32145d2e814e1c1179a82a71486b3ab493

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastddm-0.3.10-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 649.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for fastddm-0.3.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cbf204c519dc8668295d642d0c5587837a6cf873ee51514153198874d676c12d
MD5 b5a3c582eacbd5365abae51eabcc706f
BLAKE2b-256 142728141afa067a797dbb403f2b98d6d00610139194ac4883882926f39175b0

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33da1f9d72d31afbbb5bbb9b7ab132ec0677880e548ab68b0c5b229909e18cfc
MD5 6cc345f5bd55add702cc518b1b6695ca
BLAKE2b-256 b24bd0c867bd619e16b9f50a17cf6d9c08a70ffa579ced899a53ef868c440b4d

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 37338ea739660d6bee8822fe44120ac802595a6a3dcf9421ad20b46362edce02
MD5 356fdbec7242f2e5f588000e0073ab21
BLAKE2b-256 8d70d8ef65be1855aab71a0c83d421c373625d4c927641de5944b7bb5b5e8904

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6f634419bdfd0b2c2324b268681d67b1f5db6e4f17c1ee96adb375e4959c1635
MD5 8a93eb00d1a4d525d45e8e719e5e7666
BLAKE2b-256 dc66f3b42dba2ba1556b1ce75be3df7d42d3aa12015a1fe2387c23fe45d6c4a8

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fastddm-0.3.10-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 649.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for fastddm-0.3.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 95d7782602d3d8fb2b4b016a31b07ed5fe8a1892625a88a6596550b29c23f74e
MD5 cce0f53a177161722f5f83e9d5729c59
BLAKE2b-256 6aa9b7f5887d49af922f0371b4abab3f5f41aaa0be84b57e7a899244565f981c

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc2fe214eb5118d7f4f41ecf15084647260fcfc6eda55fe36005e159d4c1d589
MD5 bda516b50413c36638ac186633b69461
BLAKE2b-256 4b589c669872a4e6e570fccde6260eb74ec39936b41f90eb21b650ff08b3a236

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.10-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab42a2815a1ad32cbda2251442b325be17bca2fdbe15879ebf16396284436933
MD5 afa9adc40afb7bcbf94a097481e9c064
BLAKE2b-256 fa12b53e53ca30741719337ae65eb5c61eaa89d2cf4bb1f70a652726e90040fb

See more details on using hashes here.

File details

Details for the file fastddm-0.3.10-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.10-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6a169e725cfde1235f981f04eaaa274fe4b33d1a4b25dbf2ff19956072980f38
MD5 3c3aae051d7b0e6d93d981d9c9c83144
BLAKE2b-256 0b7d9ef9dc69b9a3b02c498227c5c31822c1f457cedd5d733bbbd984105b6eb6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page