Skip to main content

A Python/C++ library for the analysis of Differential Dynamic Microscopy experiments

Project description

FastDDM

Python GitHub Actions PyPI Version Read the Docs License: GPL v3

FastDDM is a Python package for the analysis of microscopy image sequences using Differential Dynamic Microscopy on CPU and GPU. The features implemented are targeted at the experimental soft matter research community dealing with inert and active/biological samples.

Resources

Example scripts

These examples demonstrate some of the Python API.

Calculation of the image structure function and its azimuthal average:

import fastddm as fddm

file_names = [...]  # define here your list of image file names 
images = fddm.read_images(file_names)

pixel_size = 0.3    # um
frame_rate = 50     # frames per second
    
# compute image structure function and set experimental parameters
dqt = fddm.ddm(img_seq, range(1, len(img_seq)))
dqt.pixel_size = pixel_size
dqt.set_frame_rate(frame_rate)

# compute the azimuthal average
aa = fddm.azimuthal_average(dqt, bins=dqt.shape[-1] - 1, range=(0.0, dqt.ky[-1]))

Contributing to FastDDM

Contributions are welcome via pull requests after agreeing to the Contributors' Agreement. Please, refer to the Developers' section in the documentation.

Please, report bugs and suggest features via the issue tracker.

Citing FastDDM

Please, cite this publication in every work that uses FastDDM:

E. Lattuada, F. Krautgasser, F. Giavazzi, and R. Cerbino.
The Hitchhiker’s Guide to Differential Dynamic Microscopy.
(In preparation.)

License

FastDDM is available under the GNU GPL-3.0 license.

Acknowledgements

  • The fftw-3.3.10 and pybind11 2.12.0 libraries are included in the source tree.
  • This project was funded by the Austrian Science Fund (FWF), Grant Number M 3250-N.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastddm-0.3.11.tar.gz (42.6 MB view details)

Uploaded Source

Built Distributions

fastddm-0.3.11-cp312-cp312-win_amd64.whl (653.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastddm-0.3.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastddm-0.3.11-cp312-cp312-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastddm-0.3.11-cp312-cp312-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fastddm-0.3.11-cp311-cp311-win_amd64.whl (653.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastddm-0.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastddm-0.3.11-cp311-cp311-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastddm-0.3.11-cp311-cp311-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastddm-0.3.11-cp310-cp310-win_amd64.whl (651.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastddm-0.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastddm-0.3.11-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastddm-0.3.11-cp310-cp310-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastddm-0.3.11-cp39-cp39-win_amd64.whl (651.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastddm-0.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastddm-0.3.11-cp39-cp39-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastddm-0.3.11-cp39-cp39-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fastddm-0.3.11-cp38-cp38-win_amd64.whl (651.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastddm-0.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fastddm-0.3.11-cp38-cp38-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fastddm-0.3.11-cp38-cp38-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file fastddm-0.3.11.tar.gz.

File metadata

  • Download URL: fastddm-0.3.11.tar.gz
  • Upload date:
  • Size: 42.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastddm-0.3.11.tar.gz
Algorithm Hash digest
SHA256 73df146221303f843ef9ad8df5591385d9ab6a560593cf6093fc21e3f98565b1
MD5 2903aadd768bf945b182bf74d70c9e07
BLAKE2b-256 2d97dfe488a734f5ad8d8aa9694c8977e86d9a94bf7bc7a339948a2eea286da3

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastddm-0.3.11-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 653.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastddm-0.3.11-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d58b5c618c4844d6c86b11c0b99364671b8bd21de2c83f5a3280d0bd3391ebd2
MD5 cf584f59c4bd8a4c5708403f19c8c18c
BLAKE2b-256 c7a4b22fcf40e84fa326f6db8cf0db7fb2a058c4c38a51a8a21ae3f4d1fc2e46

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 72787f9958e159e034d4ad95913a495217ee6e0934c2e191d810feacd88846a3
MD5 87ddb7b560857315e794cca3e7e422a0
BLAKE2b-256 167f373ccd3575dbdc5f635b4bb9097f4865a7d82755cc69a1a2fa2ef4966a9a

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.11-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 229ff9a258ce137b64d83ddcc5d03fef2b6db00a5c194a3cd08f2f9bf85a1dc0
MD5 569eae105eeebd3b591c2ecd6ab5a00d
BLAKE2b-256 ed0dfbbb5962a88ee188205b1862026ea03df412469e078e0fbde8a6c58d7d79

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.11-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ec05e65b37f4c8e387b07e916f91c7475757de0816970a142e6740b8c2bbd0a0
MD5 fc006c0a031360f7b5cac46ded3589d8
BLAKE2b-256 1aa66faa9cb90885538b96a4faf86b032bae005aae04f833f374e6c018f8165c

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastddm-0.3.11-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 653.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastddm-0.3.11-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d493b080cc0ac4cf3cf11c6e1ea9da20b7b615bfc0ac3bd573916f6ede1f8b23
MD5 d48d65a9ba8ebe93da5097be0cfc134b
BLAKE2b-256 39d4db85d744625ec2ba49b481b6e8336b77d30f342e0ab401f8f5da6e87aa61

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d0adbb3875d2c5d7d876da00998681b01633f952967349e083d5ab653625cb8b
MD5 2c1270c499d1646e42e915c68cc4ea6f
BLAKE2b-256 4d5a544755d4b03190fef4dd096df8227753e39b8137a0c9dbb6ea1401f7e4b6

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.11-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fe4eb04031ecc35cf2f840cac0b3e344bbc9e6342ae1c6e9f2b7645514295ff1
MD5 ed5563fafe254a1be5768e7f9f38611e
BLAKE2b-256 85fc8a9860aa7b07033dfeb4717fc6213cf9d9b80e5b5f4bff6b173de91d7bf8

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.11-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c0d143a37a6e8a138b358c807660609d423f63af18600a04e85ea01a759abea0
MD5 e555030b7afb15e4f3ce87945994faeb
BLAKE2b-256 f279d9720f2165ae769f0b69ae4f48ac0dc66475ce575111b1a00af47a48ec8b

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastddm-0.3.11-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 651.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastddm-0.3.11-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3ade7c68d33e5e4ff306e51d79c5cad9a3ef7dd493a14e76ed1f4812c192bc36
MD5 23de83f99d463241b4f3522cb74671fc
BLAKE2b-256 6b968597817f28d3b6ed198e85a59c713bafe599b8d309b41b299ac91d1d14fc

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3293b682b4535a06343e6c7aa324065a485d27a78ec3cb1663b430011b908fe5
MD5 945e639d7fa9faff8e5df365a6122a21
BLAKE2b-256 15bc0d3005efc2b84e9d3d486eb99409a199fbf3429cff5acd679a6a2ec72991

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.11-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d84521ba0d6d7b923ea7f25736f5a0ec79774047f5a8b16752221e0c4902f634
MD5 74809507f8a27f097b9b6f754f339507
BLAKE2b-256 1c45ff8ee1d44c2936a03ad68b8d2f648301fab31233d0343da938e442458ed2

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.11-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c3be4b72006da1d28610b96e430da12c89681860172d2a9eb4190ab6b747d6d0
MD5 27e97b83cba42ca97d8b348c380f5bef
BLAKE2b-256 d6a3acba4a12e3c025f662038eb2952332c6a4770b899915b6b81770893f8e2b

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastddm-0.3.11-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 651.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastddm-0.3.11-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1bd0f15846be1efb77dc30d91765f576077d6c7eef33352a67ae9b870664b88c
MD5 737279f376255a46435a8ce6e45bd7ec
BLAKE2b-256 9a725210115bf67bbd2d6a8f8921d5ec0a9b3a65b8eceee1d36d9fec6d624eb0

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e95d9453795cfd839dcb0a02911a93a7685a3dbc6e21562d1ab82f4e706960c
MD5 f8963d4f7c56eac7ba54105d285783f3
BLAKE2b-256 fd9f9d0c070ed0fd24a4299e248464ed7a8664ff7823ab416f11bdf15eeba2ce

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.11-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8018910c1aa9b7158f697288d16fe39e8f8d7a14628df4e79f8c81bc66d40ba5
MD5 194c8e837da839a1d5be0e62a61dacad
BLAKE2b-256 442a122973d2bb9b253fe0b7c4c70423a84cb9d3f0833792b19af340314dce29

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.11-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3e5578aad1b162c27ddf3b2aa20954ae7c2ddf206ea124609ecdbd82581df950
MD5 fae91374ea1f90254c9213ccd4cf07a7
BLAKE2b-256 50347849a3294d7b3f247b2aa76c5dad5d54c6fe5cfc218438c5c36bc4182861

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fastddm-0.3.11-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 651.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastddm-0.3.11-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 971e4353767a60dd219d5c9a90e5130cc674bc7d7dc41cd2d96732e7a5c110e2
MD5 b9a379be034dc7011e60b85717a3201e
BLAKE2b-256 bc256a3c1b13cc2632606285bf22efdff1f3f7447e2c568aa3bd080e78637ffa

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 18a2014692240232e9f53dc2e8163f47fcf989135d4911944e394e2409541770
MD5 f88db7ce0c84bbcb5244fc9358d715db
BLAKE2b-256 dfe6bd24f66c2effa52a9d7ecaca72d986a88cb09bcf9f840fbc33e2d257f64f

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.11-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5ac052f3d4a296ad3d2e6d3c1dc3da502073c6657827e6577f56e227ba48ce99
MD5 84f8468a162c8bed4a44b27404e1faa4
BLAKE2b-256 11ccb3dc3ebe0188c422edbde7c1378244e34b3e0591804a12ca0bc3616cbc86

See more details on using hashes here.

File details

Details for the file fastddm-0.3.11-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.11-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 760dc82682734944510a07c041ed2c4e693a82f1d0e05f6617fd26f04d233fdc
MD5 5ad1d9279ace63c168c7bd6c92416f49
BLAKE2b-256 0cc09d3a179006a09c266d2253021aee3ab0ca7d0ee1fab3e39a61dd63ed929e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page