Haystack 2.x component to embed strings and Documents using fastembed embedding model
Project description
fastembed-haystack
Table of Contents
Installation
pip install fastembed-haystack
Usage
You can use FastembedTextEmbedder
and FastembedDocumentEmbedder
by importing as:
from haystack_integrations.components.embedders.fastembed import FastembedTextEmbedder
text = "fastembed is supported by and maintained by Qdrant."
text_embedder = FastembedTextEmbedder(
model="BAAI/bge-small-en-v1.5"
)
text_embedder.warm_up()
embedding = text_embedder.run(text)["embedding"]
from haystack_integrations.components.embedders.fastembed import FastembedDocumentEmbedder
from haystack import Document
embedder = FastembedDocumentEmbedder(
model="BAAI/bge-small-en-v1.5",
)
embedder.warm_up()
doc = Document(content="fastembed is supported by and maintained by Qdrant.", meta={"long_answer": "no",})
result = embedder.run(documents=[doc])
You can use FastembedSparseTextEmbedder
and FastembedSparseDocumentEmbedder
by importing as:
from haystack_integrations.components.embedders.fastembed import FastembedSparseTextEmbedder
text = "fastembed is supported by and maintained by Qdrant."
text_embedder = FastembedSparseTextEmbedder(
model="prithivida/Splade_PP_en_v1"
)
text_embedder.warm_up()
embedding = text_embedder.run(text)["sparse_embedding"]
from haystack_integrations.components.embedders.fastembed import FastembedSparseDocumentEmbedder
from haystack import Document
embedder = FastembedSparseDocumentEmbedder(
model="prithivida/Splade_PP_en_v1",
)
embedder.warm_up()
doc = Document(content="fastembed is supported by and maintained by Qdrant.", meta={"long_answer": "no",})
result = embedder.run(documents=[doc])
You can use FastembedRanker
by importing as:
from haystack import Document
from haystack_integrations.components.rankers.fastembed import FastembedRanker
query = "Who is maintaining Qdrant?"
documents = [
Document(
content="This is built to be faster and lighter than other embedding libraries e.g. Transformers, Sentence-Transformers, etc."
),
Document(content="fastembed is supported by and maintained by Qdrant."),
]
ranker = FastembedRanker(model_name="Xenova/ms-marco-MiniLM-L-6-v2")
ranker.warm_up()
reranked_documents = ranker.run(query=query, documents=documents)["documents"]
print(reranked_documents[0])
# Document(id=...,
# content: 'fastembed is supported by and maintained by Qdrant.',
# score: 5.472434997558594..)
License
fastembed-haystack
is distributed under the terms of the Apache-2.0 license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
fastembed_haystack-1.4.1.tar.gz
(19.8 kB
view details)
Built Distribution
File details
Details for the file fastembed_haystack-1.4.1.tar.gz
.
File metadata
- Download URL: fastembed_haystack-1.4.1.tar.gz
- Upload date:
- Size: 19.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: python-httpx/0.27.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b1c583507c224ee110f07bd1c98c1d12cba7116d6f2ae4f578a2ad0fac047886 |
|
MD5 | 93cd1e3ff00b1293ba3ca4489e6de550 |
|
BLAKE2b-256 | f002b5bdeaef76ff74265d6683ec2641c80a36034485b6380963b8a69cef6a52 |
File details
Details for the file fastembed_haystack-1.4.1-py3-none-any.whl
.
File metadata
- Download URL: fastembed_haystack-1.4.1-py3-none-any.whl
- Upload date:
- Size: 19.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: python-httpx/0.27.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e7ebdb992687af10eefa5db7e1e5ca33664b20a9f25013791afff35b46ce10e4 |
|
MD5 | 7aab3a6aba9365d3090bf87d2d5e39a3 |
|
BLAKE2b-256 | c5642d58644656623d381a02aebc3ee67f71b6cad62f0b4e35a6d0294441d396 |