Faster interpretation of the original COCOEval
Project description
Faster-COCO-Eval
Disclaimer
I often use this project, but I saw it abandoned and without a public repository on github. Also, part of the project remained unfinished for a long time. I implemented some of the author's ideas and decided to make the results publicly available.
Faster-COCO-Eval base
This package wraps a facebook C++ implementation of COCO-eval operations found in the pycocotools package. This implementation greatly speeds up the evaluation time for coco's AP metrics, especially when dealing with a high number of instances in an image.
Comparison
For our use case with a test dataset of 5000 images from the coco val dataset. Testing was carried out using the mmdetection framework and the eval_metric.py script. The indicators are presented below.
Visualization of testing comparison.ipynb available in directory examples/comparison Tested with yolo3 model (bbox eval) and yoloact model (segm eval)
Type | COCOeval | COCOeval_faster | Profit |
---|---|---|---|
bbox | 18.477 sec. | 7.345 sec. | 2.5x faster |
segm | 29.819 sec. | 15.840 sec. | 2x faster |
Usage
This package contains a faster implementation of the
pycocotools COCOEval
class.
To import and use COCOeval_faster
type:
from faster_coco_eval import COCO, COCOeval_faster
....
For usage, look at the original COCOEval
class documentation.
Usage plot curves
from faster_coco_eval import COCO
from faster_coco_eval.extra import Curves
cocoGt = COCO(....)
cocoDt = cocoGt.loadRes(....)
cur = Curves(cocoGt, cocoDt, iou_tresh=0.5, iouType='segm')
cur.plot_pre_rec()
Setup dependencies
- numpy
- plotly (optional if extra.Curve usage)
history
v1.4.1
- append Plotly fig return
- append preview GT only func. Without eval.
cocoGt = COCO(...)
preview = PreviewResults(cocoGt, iouType='segm')
preview.display_tp_fp_fn(data_folder=..., image_ids=..., display_gt=True)
v1.4.0
- fix issue https://github.com/MiXaiLL76/faster_coco_eval/issues/12
- Updated pre-rec calculation method
- Updated required libraries
- Moved all matplotlib dependencies to plotly
- Append new examples & mmeval test file
v1.3.3
- fix by ViTrox https://github.com/vitrox-technologies/faster_coco_eval
- missing file issue
- issue discovered by torchmetric
- fstring for python3.7
- Windows compilation
v1.3.2
- rework math_matches function. moved to faster_eval_api
- Moved calculations from python to c++
- Separated extra classes
- Added new sample data
- append mIoU based on TP pred.
- append mAUC based on Coco pre/rec.
v1.3.1
- rework mask code
- change np.float to float (numpy deprecations)
v1.3.0
- remove pycocotools dependencies
- clean c/c++ code
v1.2.3
- Implemented of mean IoU for TP
- set FP-red FN-blue
v1.2.2
- Removed own implementation of pre-rec
- Switched to the implementation of pre-rec calculation from COCO eval
- Lost backward compatibility
- Implemented output fp/fn/tp + gt to pictures
v1.2.1
- bug fix with pre-rec curve
- rework error calc (tp/fp/fn)
- change image plot to plotly
- append docker auto builder
- append native iou calc (slow but accurate)
- rework auc calc with link
v1.1.3-v1.1.4
- rebuild plotly backend
- Segm bug-fix
v1.1.2
- Append fp fn error analysis via curves
- Append confusion matrix
- Append plotly backend support for ROC / AUC
v1.1.1
- Redesigned curves
- Reworked data preload
- Append csrc to setup
- Build sdist Package
v1.1.0
- Wrap c++ code
- Get it to compile
- Add COCOEval class wraper
- Remove detectron2 dependencies
- Remove torch dependencies
- Append unittest
- Append ROC / AUC curves
- Check if it works on windows
License
The original module was licensed with apache 2, I will continue with the same license. Distributed under the apache version 2.0 license, see license for more information.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for faster_coco_eval-1.4.1-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2bfefa7448bb4d0ca8971f9926b8aae5324fc843c1aa9206cfb28784f0b50340 |
|
MD5 | f375f59fdfba44da2ddc12fa341e431c |
|
BLAKE2b-256 | ecb3b5ff90aca0f321121a8a956a81c887a5c5c67fd7d03f507ca391fa99797a |
Hashes for faster_coco_eval-1.4.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5b7a69dad6e44f2665ca6b09ea4cc0c5be54fc61082937d566b69bf879858166 |
|
MD5 | 4103b3d07864135be27c1a7fcc7c4f3c |
|
BLAKE2b-256 | c9feab20a316fc0f02fcac642434e72a39a028114ee64cacf919e7411ad87e90 |
Hashes for faster_coco_eval-1.4.1-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 36fbeafc4b74a12b3b5bd528c017d8bfd3024006e04ceeddac6b87346ce8cf21 |
|
MD5 | bb19e2f5534d52265aa5e23f6d3b0c1a |
|
BLAKE2b-256 | 1c5687c1e604f7c72e94b5df3601dab467eeb5ce071710177a6514d7282fad62 |
Hashes for faster_coco_eval-1.4.1-cp37-cp37m-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 46d5e538c840f253377372ca7f6b62f04b29131e30be4c38875f3804e1b8ef49 |
|
MD5 | 274307ea7843aa272e1ce2f49757fb03 |
|
BLAKE2b-256 | 1cd0504ff9e2b58493af53e6cf1e94cd62d2e37f3435f1ae1d9d3f403ae409cc |