Skip to main content

Fast multi-threaded raster operations with simple IO

Project description

Faster-Raster

pypi image License

fasterraster is a fast multi-threaded python library for performing raster operations using openMP and numpy objects complete with simple IO.

Motivation

fasterraster was developed to quickly perform raster operations, enabling self-supervised learning for raster based analyses. fasterraster provides a cython wrapper for optimized openMP c code. Data objects are handled by numpy allowing for straightforward memory management. Currently only computation of visual/morphological features have been implemented however this is open to expansion in the future. All code is still in development and thus it is recommended to test fully before use.

Installation

fasterraster has currently been tested on Linux and Microsoft windows operating systems. You will need python>=3.6 installed. It is recommended to install fasterraster within a virtual environment.

Install using pip

To install fasterraster from PyPI using pip:

pip install fasterraster

Install from source

To build fasterraster from source, download this repository and run:

python3 setup.py build_ext --inplace

Note: You will need to have the required build dependencies installed.

Example

import timeit
import numpy as np
import fasterraster as fr
from pathlib import Path

NTESTS = 10

# Load a .bil file containing a DEM
fname = Path('./test_data/dem.bil')
dem = fr.read(fname)

# regular python implementation of hillshade function
# from https://www.neonscience.org/resources/learning-hub/tutorials/create-hillshade-py
def py_hillshade(dem, cell_size, azimuth=330, altitude=30):
    azimuth = 360.0 - azimuth

    dem = dem / cell_size
    x, y = np.gradient(dem)
    slope = np.pi/2. - np.arctan(np.sqrt(x*x + y*y))
    aspect = np.arctan2(-x, y)
    azimuthrad = azimuth*np.pi/180.
    altituderad = altitude*np.pi/180.
 
    shaded = np.sin(altituderad)*np.sin(slope)
    + np.cos(altituderad)*np.cos(slope) * np.cos(
    (azimuthrad - np.pi/2.) - aspect)
    
    return 255*(shaded + 1)/2

# Time hillshade computation using regular python
time = timeit.timeit(lambda: py_hillshade(dem.raster, dem.XDIM), number=NTESTS)
print(f'python hillshade averaged {time/NTESTS:.3f} seconds')

# Time hillshade computation using fasterraster for num-threads
num_threads = [1,2,4,8]
for numt in num_threads:
    time = timeit.timeit(lambda: fr.hillshade_faster_mp(dem.raster, numt), number=NTESTS)
    print(f'hillshade averaged {time/NTESTS:.3f} seconds for {numt} threads')

Example output:

python hillshade averaged 2.880 seconds
hillshade averaged 0.081 seconds for 1 threads
hillshade averaged 0.041 seconds for 2 threads
hillshade averaged 0.034 seconds for 4 threads
hillshade averaged 0.024 seconds for 8 threads

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fasterraster-0.0.4.tar.gz (25.8 kB view details)

Uploaded Source

File details

Details for the file fasterraster-0.0.4.tar.gz.

File metadata

  • Download URL: fasterraster-0.0.4.tar.gz
  • Upload date:
  • Size: 25.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for fasterraster-0.0.4.tar.gz
Algorithm Hash digest
SHA256 240540bff63e921a86aa9c720c77e826d5184dd9be56ad671c94e31db9e9c619
MD5 74b3c3306cbdc6b289dd194cddd507c2
BLAKE2b-256 ef8a6bf02a70ff0de76bc1b87df11a90d4a0396ed5765fc3de87155a98ca4a82

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page