Skip to main content

High-Performance Linear/Non-Linear Filters and Window Functions Library in C++ with Python Bindings

Project description

Logo

High-Performance Non-Linear Filters and Window Functions Library in C++ with Python Bindings

Comprehensive Library for Digital Signal Processing in C++, Python

mohammadraziei - MedianFilterCpp forks - MedianFilterCpp

Python Cpp

License issues - MedianFilterCpp

About The Project

fastfilter is a powerful library written in C++ with Python bindings. It provides you with the capability to use commonly used window functions and non-linear filters that are utilized in digital signal processing. You can use it in both Python and C++.

Features

Here are some key features of fastfilter

  1. Python Bindings

    • Easy Integration: Install the project in Python and use the filters and window functions seamlessly.
    • Cross-Language Compatibility: Utilize the library in both Python and C++ environments.
  2. Common Non-Linear Filters

    • Average Filter: Computes the mean of the surrounding values, smoothing the signal.
    • Median Filter: Reduces noise by replacing each value with the median of neighboring values.
    • Minimum Filter: Selects the smallest value from the surrounding values, useful for edge detection.
    • Maximum Filter: Selects the largest value from the surrounding values, enhancing bright regions.
    • High Performance: Implemented using one of the fastest algorithms to ensure efficient processing.
    • Versatile Usage: Suitable for various signal processing projects.
  3. Window Functions

    • Triangular Window: Simple and efficient, used for basic signal smoothing.
    • Hamming Window: Reduces the side lobes in the frequency domain, improving spectral analysis.
    • Parzen Window: Provides a smooth tapering of the signal, reducing spectral leakage.
    • Hann Window: Minimizes the first side lobe, commonly used in Fourier analysis.
    • Blackman Window: Offers better side lobe suppression, ideal for high-resolution spectral analysis.
    • Gaussian Window: Provides a smooth, bell-shaped curve, useful for time-frequency analysis.
    • Tukey Window: Combines rectangular and Hann windows, offering adjustable side lobe suppression.
  4. Header-Only Implementation

    • Ease of Use: No need for separate compilation, simply include the headers in your project.
    • Portability: Easily integrate into various projects without dependency issues.
  5. Comprehensive Documentation

    • Detailed Guides: Step-by-step instructions for using the filters and window functions.
    • Examples: Practical examples to help you get started quickly.

Usage in python

Using fastfilter is intuitive and straightforward. Below are some examples to help you get started.

Accessing Help

All classes come with a help section to guide you through their usage:

import medianFilter
help(medianFilter)
print(medianFilter.__version__)

Applying Filters

You can easily apply various filters to your signal data. Here are some examples:

Average Filter

import numpy as np
import medianFilter as filt

signal = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
kernelSize = 5
output = filt.movingfilter(signal, kernelSize // 2, 'average')
print(output)

Median Filter

import numpy as np
import medianFilter as filt

signal = np.array([1, 12, 7, 8, 1, 16, 2, 18, 9, 21])
kernelSize = 5
output = filt.movingfilter(signal, kernelSize // 2, 'median')
print(output)

Maximum and Minimum Filters

import numpy as np
import medianFilter as filt

signal = np.array([1, 12, 7, 8, 1, 16, 2, 18, 9, 21])
kernelSize = 5

# Apply maximum filter
output_max = filt.movingfilter(signal, kernelSize // 2, 'maximum')
print(output_max)

# Apply minimum filter
output_min = filt.movingfilter(signal, kernelSize // 2, 'minimum')
print(output_min)

Using Window Functions

You can also apply various window functions to your signal data. Here’s an example of using the Hamming window:

import numpy as np
import windowFunctions as wf

# It should be completed here
# windowFunctions is not binded yet. 

Usage in C++

Integrating fastfilter into your C++ projects is simple.

Applying Filters

You can effortlessly apply various filters to your signal data.

Average Filter

#include <iostream>
#include "medianFilter.h"

int main() { 
    std::vector<float> data {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

    // Create output vector and variables
    std::vector<float> output(data.size());
    const uint32_t halfWindowSize = 2;

    // Apply median filter
    filt::movingFilter(output, data, halfWindowSize, filt::kernel::average);

    // Display the output
    for (const auto& val : output) {
        std::cout << val << " ";
    }
    std::cout << std::endl;

    return 0;
}

Median Filter

#include <iostream>
#include "medianFilter.h"

int main() { 
    std::vector<float> data {1, 12, 7, 8, 1, 16, 2, 18, 9, 21};

    // Create output vector and variables
    std::vector<float> output(data.size());
    const uint32_t halfWindowSize = 2;

    // Apply median filter
    filt::movingFilter(output, data, halfWindowSize, filt::kernel::median);

    // Display the output
    for (const auto& val : output) {
        std::cout << val << " ";
    }
    std::cout << std::endl;

    return 0;
}

Minimum and Maximum Filters

#include <iostream>
#include "medianFilter.h"

int main() { 
    std::vector<float> data {1, 12, 7, 8, 1, 16, 2, 18, 9, 21};

    // Create output vector and variables
    std::vector<float> output(data.size());
    const uint32_t halfWindowSize = 2;

    // Apply minimum filter
    filt::movingFilter(output, data, halfWindowSize, filt::kernel::minimum);

    // Display the output
    std::cout << "Minimum Filter Output: ";
    for (const auto& val : output) {
        std::cout << val << " ";
    }
    std::cout << std::endl;

    // Apply maximum filter
    filt::movingFilter(output, data, halfWindowSize, filt::kernel::maximum);

    // Display the output
    std::cout << "Maximum Filter Output: ";
    for (const auto& val : output) {
        std::cout << val << " ";
    }
    std::cout << std::endl;

    return 0;
}

Using Window Functions

Example 1: Basic Window Functions

#include <iostream>
#include "windowing.h"
#include <vector>

int main(int argc, char** argv) {
    std::vector<float> input = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; 
    std::vector<float> output(input.size()); 

    // Apply various window functions
    window::windowFunction(output, input, input.size(), window::kernel::triangularWindow);
    window::windowFunction(output, input, input.size(), window::kernel::hammingWindow);
    window::windowFunction(output, input, input.size(), window::kernel::parzenWindow);
    window::windowFunction(output, input, input.size(), window::kernel::hannWindow);
    window::windowFunction(output, input, input.size(), window::kernel::blackmanWindow);
    window::windowFunction(output, input, input.size(), window::kernel::triangularWindow);

    return 0; 
}

Example 2: Window Functions with Parameters

#include <iostream>
#include "windowing.h"
#include <vector>

int main(int argc, char** argv) {
    std::vector<float> input = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; 
    std::vector<float> output(input.size()); 

    const float parameter = 0.3; 

    // Apply window functions with parameters
    window::windowFunction(output, input, input.size(), parameter, window::kernel::gaussianWindow); 
    window::windowFunction(output, input, input.size(), parameter, window::kernel::tukeyWindow); 

    return 0; 
}

These examples demonstrate how to use various window functions provided by the library. The first example shows basic window functions, while the second example includes window functions that require additional parameters.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastfilter-0.0.4.tar.gz (45.4 kB view details)

Uploaded Source

Built Distributions

fastfilter-0.0.4-cp313-cp313-win_amd64.whl (138.9 kB view details)

Uploaded CPython 3.13 Windows x86-64

fastfilter-0.0.4-cp313-cp313-win32.whl (117.0 kB view details)

Uploaded CPython 3.13 Windows x86

fastfilter-0.0.4-cp313-cp313-musllinux_1_2_x86_64.whl (647.0 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

fastfilter-0.0.4-cp313-cp313-musllinux_1_2_i686.whl (700.4 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

fastfilter-0.0.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (126.1 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

fastfilter-0.0.4-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (136.6 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

fastfilter-0.0.4-cp312-cp312-win_amd64.whl (138.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastfilter-0.0.4-cp312-cp312-win32.whl (117.0 kB view details)

Uploaded CPython 3.12 Windows x86

fastfilter-0.0.4-cp312-cp312-musllinux_1_2_x86_64.whl (647.0 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

fastfilter-0.0.4-cp312-cp312-musllinux_1_2_i686.whl (700.4 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

fastfilter-0.0.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (126.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastfilter-0.0.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (136.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

fastfilter-0.0.4-cp311-cp311-win_amd64.whl (149.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastfilter-0.0.4-cp311-cp311-win32.whl (128.8 kB view details)

Uploaded CPython 3.11 Windows x86

fastfilter-0.0.4-cp311-cp311-musllinux_1_2_x86_64.whl (651.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

fastfilter-0.0.4-cp311-cp311-musllinux_1_2_i686.whl (705.9 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

fastfilter-0.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (131.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastfilter-0.0.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (142.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

fastfilter-0.0.4-cp310-cp310-win_amd64.whl (147.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastfilter-0.0.4-cp310-cp310-win32.whl (126.8 kB view details)

Uploaded CPython 3.10 Windows x86

fastfilter-0.0.4-cp310-cp310-musllinux_1_2_x86_64.whl (652.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

fastfilter-0.0.4-cp310-cp310-musllinux_1_2_i686.whl (705.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

fastfilter-0.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (131.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastfilter-0.0.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (142.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

fastfilter-0.0.4-cp39-cp39-win_amd64.whl (148.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastfilter-0.0.4-cp39-cp39-win32.whl (127.7 kB view details)

Uploaded CPython 3.9 Windows x86

fastfilter-0.0.4-cp39-cp39-musllinux_1_2_x86_64.whl (651.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

fastfilter-0.0.4-cp39-cp39-musllinux_1_2_i686.whl (705.7 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

fastfilter-0.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (131.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastfilter-0.0.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (142.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

fastfilter-0.0.4-cp38-cp38-win_amd64.whl (147.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastfilter-0.0.4-cp38-cp38-win32.whl (127.1 kB view details)

Uploaded CPython 3.8 Windows x86

fastfilter-0.0.4-cp38-cp38-musllinux_1_2_x86_64.whl (651.9 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

fastfilter-0.0.4-cp38-cp38-musllinux_1_2_i686.whl (705.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

fastfilter-0.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (131.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fastfilter-0.0.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (142.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

File details

Details for the file fastfilter-0.0.4.tar.gz.

File metadata

  • Download URL: fastfilter-0.0.4.tar.gz
  • Upload date:
  • Size: 45.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastfilter-0.0.4.tar.gz
Algorithm Hash digest
SHA256 3d2ee16906828892c56173fa924cd36897c30493d1e03e771837612d855fc537
MD5 baa6de90a414fb955ab1d16286b8cc51
BLAKE2b-256 e1d03e832953fa67235c5f916eebf5f2208dd2930d394bb6d2fdeb345d8d2a8b

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 af715a53ba09333bbb91b7933b466f9c1e9b222f6c4a5bf09e33991fa365dba7
MD5 91701c456f80fd9da459ac3f66fb91ac
BLAKE2b-256 acb9beb6f1390f97a9ab748d8c2dae859954993e588c777f417900a34b7cbd2e

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp313-cp313-win32.whl.

File metadata

  • Download URL: fastfilter-0.0.4-cp313-cp313-win32.whl
  • Upload date:
  • Size: 117.0 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastfilter-0.0.4-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 f903ddd1ce629d9bef23ef1b67f4b17f03dc5388b5411ee7ddab955f273b3368
MD5 99e43ffccc0de4f423e77ca100fa47e3
BLAKE2b-256 862ff2e652a1806f0760a52bc6798e567cd6fb0199b5a2d87f08711f918f91d2

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e623637f1a0187032b27274b47ab0344eaf07c873334f59a433a66f152e2cbd5
MD5 09b94a906201b8bad5ef42ceb451526a
BLAKE2b-256 5ee66046d40d9461c5a99ce80db40adac6319a562fe97b3fe5a31dc6ef4c774a

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 6912f0b4e93e200d116a9e39bd53f32c82d83bd75c4b7b332366db461b92174f
MD5 12be16e22407a7e88322bc625d4d07bd
BLAKE2b-256 acc501c083d6be3193fa2ea68342938421ac5973a63fc681155dfefa9b1df266

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d18258ab1072f2689dde883fb8a226cfe40a24d9f224ff141aeb4f1889d5f98
MD5 872b03abeba0b721ce57fbd611aef13c
BLAKE2b-256 9aa092e62647d093cf32434a59551e52f457f4a532a3e460569beb5721786609

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 781d68ce2e6f211a5cfd2bf59054bb4576eea1fd3f92e6d953651da4d90886f7
MD5 dab7c4907a93edbeea041f96466f1bf5
BLAKE2b-256 2d573d7f79fbc24ccd94112412492de4b3fa9eeea1efb78f7a389322a1dd12f3

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9fe43b563ccad4f8f0ecd7064b6afea6d1fd1fbf6813c517ea40f72cedb736dc
MD5 f5c33e9cc0f73509905d705ce3c8d4ab
BLAKE2b-256 4149f71b30f735ad2113916e78d10b92a219b73beacb949cd9de3fb030818a1f

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp312-cp312-win32.whl.

File metadata

  • Download URL: fastfilter-0.0.4-cp312-cp312-win32.whl
  • Upload date:
  • Size: 117.0 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastfilter-0.0.4-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 c4b63c694d7c4b1f0fdc5fc360e35c3c8a2e05081a3a1d68149f9db7e0a79d48
MD5 6de329140920e1389b749dadc1e293a2
BLAKE2b-256 80a0109cdb5fcdc5bf9a4ee7a87517ae4a1d2f16dee03f808628803406a42f68

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 79e0fffc9a1dc0f2a9cdd5814b8c20d181df8b26b7d715a7456059ff76653927
MD5 26e05bd43590361d201ba017bdaa3881
BLAKE2b-256 ef02501d26030639b7bc339bd2479ac8dfa28472da978f2a6e15a51172e4cd19

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 35ed4d4050a1806fd961efa20de2d357e6e56603ccdb850b56e0d7a182f1f149
MD5 07e34602bb68e1965fd004f470e918e6
BLAKE2b-256 f3cdc4b8379725af5ec01c422f79975b499360ab8e0daa0f48ddfc19b57a56a9

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19d8b0de3c356cdf2cb1bee92760f03795b9569bb40f2c8ee483f44611d6aaa8
MD5 7a9fef6a4c230fc2b58032f4f83a1ea5
BLAKE2b-256 03ed42e479ed2f4345c370376d30fcb385da3d52597d4fd12b1ded5ba4064565

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 802efcac0115a016c9c4bc1bff27f00bfc58da906f6aba79c0851fc2d073bd84
MD5 b31a2650349fb3e5f347e4ce80568a4d
BLAKE2b-256 74e7dc90a36a4c2f5b8165b86da682e0da44abfc71f35c60a55ec99a2c68b76b

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7cb6e0e1e121caeeebde6825370e242977243be04b29de9c37ceba26108d7039
MD5 288ff94436f5b339847100136c526d7a
BLAKE2b-256 d0da17246ba11e7391efdf50fd689b7ed55f5157947816c99a3584eea1825021

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: fastfilter-0.0.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 128.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastfilter-0.0.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 a3235eba42c445ea917f2d5f2be0894bd546a5deed0925274b2a2bdc4c2a274c
MD5 9cbafb620cbd8cddf1ecccc1584f19af
BLAKE2b-256 29cc629b14091d5bcc341b299d8756b1c78075fbe37e93e19a98328f17beaa4f

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f7838541eaa00c1cd57f7325593d521c8ef0e6ef05e7e87aee8e59770e2dd217
MD5 b9b0048857f3622403976559089feaf0
BLAKE2b-256 7fc597db46a1fe9b9172b528d6e861feb1d371b8450501d15989a216ff1afdec

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 22ae2d92411a05c128ab82681f356616b7160dfd92971a461f32378a5975db88
MD5 e719c47b6b49e2e06c193dc485374aa6
BLAKE2b-256 00495146343348e91281b5f73dc0c0a04583a535044a6ebff1b265370b394416

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aee007dc22c5d5cb834945db88c5051f1c5f66269c1e540c900dab980c0f1b62
MD5 e4d85daadccef1a66cca93b19e93ced7
BLAKE2b-256 fb4b3ba24c4deb70b66fb4815d084a7e22a93fdbfc86fe7c14bd5ec12a004a9f

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fb5575af66b27ea267dc56b79b9f15dba162c26c89f383b75d69aad773d71a5c
MD5 968a98f530b195fc306add45d3576304
BLAKE2b-256 b8939858f1736f4c5b667a7982e8684343ac06f758d50521224da5cba8cad328

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 749458291a172fbb22c251cd8fa37c9a8b506ea64e584f65f80b97efa9afefb8
MD5 bdc362735b8ae506b2d09ad42a5690c7
BLAKE2b-256 432baf4cf1ee2803979d0a16ad3063a8e6ad598449d500e887eff256af195fa0

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: fastfilter-0.0.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 126.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastfilter-0.0.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 7b22670d171f737aeb2c488100bf9773a1e05fefce8a422164a7419c7884358c
MD5 0715b11c0c4b3d7b756cee8d3ccc00ce
BLAKE2b-256 854311827f8d7b913b726d594fe21fba7e51297aec9c03d41a7d42a7229537a1

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ac00869f1fb83b868fa78a92fb988633ed6dbbd4773615ee71a574c03ff893be
MD5 3e22f765e78ae8ec238126b1887fdaf0
BLAKE2b-256 5d781a667726900ce5d6bd01a9eb09fbf443692bd4330b9fb2ca44c07876e5da

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 666614def4b89ebd6ade9da0665a63d5c79a7d9f5b178af879c4d600d8ad3c0d
MD5 69b802fe495376ce04f4729d763b1bb1
BLAKE2b-256 7346113256329e5dcedc351a72f45d75486878f049d2f14698aab5fc35f7324d

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff7d6607b7bc29bc8de83a66bda2b8ea4f33c28a067b2d951653ed960001223c
MD5 d37e01cf8ff26b297bb392d84946f818
BLAKE2b-256 d957e17c048ccd8b401fc4fd4fd629ef3715889b9588d1a0cab4715d19315c29

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fa46aa916704e0eab16551d90589ffc164e1c872232fc907c513a3a9fab14489
MD5 c9de7e182ff0400a045a0e957807532f
BLAKE2b-256 a063b22edf0e85ac9f2e438a4d3107949271ba107c39ce03607f7a1222b37b54

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastfilter-0.0.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 148.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastfilter-0.0.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3dc25b36dc2efe375ecb148820a49ff7857fd21748196246930583cecc670ce9
MD5 c744f009af8abaa4f4c414ac8374e2d2
BLAKE2b-256 ee5538ad10c7d28b041d493ed5c8373120da16b6ebf15cd73db4cd5fb46fd96d

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: fastfilter-0.0.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 127.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastfilter-0.0.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 30c7394d6389c2bfe6b4c4bf47d2f52acefce212c8e938fafac4520fa8c67ff8
MD5 8085973c14fca0a66d62c8b6f00e1909
BLAKE2b-256 5f4e3048a10a7f666de08fcf128f8569cc54c559680e952a624c28f41000ebf1

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2ee94a3b5a303578541abbbaee5f30d43b87e1979287838c7194a4f1e8239d6b
MD5 185cf920bae5b958411ff6612c4e023e
BLAKE2b-256 d9f7c95ee306c2ac9f007421efa0b9ecc081c661c12fe9a37a25d0a57992f431

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 07d7fd4b72779cfacd807d2e91a807dc3b5e59a4726b27526c170d28893c869b
MD5 cded5be88d2baae0ad615e9497af9837
BLAKE2b-256 c735d620ae768949bafa27cf50960e3821ce6ff7a5df7bb48dc75a98894ebf81

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa11da612e4edcc4f4b77546a5577c10bf848d5f4957ff61a8338e62bfaaf091
MD5 912958cbe3c0df4ddb9b159304b266c2
BLAKE2b-256 2fe02b67748c0e9fde1b00e43556355c4aeb250b7a5d8d1209056649e67f23a2

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e2a1e3567bd367698f5d7a098b69ab09bf3eaba86529d7b83e60185e1678f69c
MD5 39f83d3f61f4a516e6761c1f6b9087b4
BLAKE2b-256 80faec77270221e7a93405ae00de30bd29c0b7af8b5e67d8bd441f1aacaa5b08

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fastfilter-0.0.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 147.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastfilter-0.0.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e3a94f8805150b4d79277903ed9d3a7617a485b9531a4e3891b6b3ab270629cc
MD5 7899d5dc4c3f36001470cdde134277c5
BLAKE2b-256 06cc2bab4538dd30ca68158852e16faad7ccdb853e1201f3a0c52dff222d9b7f

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: fastfilter-0.0.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 127.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastfilter-0.0.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bc93cb08326cca5c90bc95ff6e209f9ebfcf5529f967f69747b1ac1d8178b330
MD5 2c0a8d72a963142d92017c7b4084947a
BLAKE2b-256 0c82cfb0ea1d02d70a3e6cb384cdee57a500160ed0524d41ec4a54d6c675bccc

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d0bd3c3a03b33f664dca0f8fdd404ca81513e345e96af4b185b6676402cd9e2e
MD5 de86dc98bf34afb1db238f13da7fb025
BLAKE2b-256 29c4283ad62547a4ea5514d9eec4135c1d6e2697c792797d9907cb3248d9605c

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 14f006f55fe0643adcff0e4f8e378e59c2c0f7cf86151eab71bb0f898e6a983e
MD5 c6cdecbc209f87fba954d4bf820566bb
BLAKE2b-256 7e8efdc640a49c7bb787141ffeb3ff83b6feebdcc6c2af0d84fa05448b7a26b1

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1a2d842f5f954a12fabc86978f1c41f74a2e24d29b8de3481f0cfb6e744e1a9a
MD5 e269bb89b5a65c3da6eaacecb819b775
BLAKE2b-256 73d7fee6406b45f695d0c85f140ada8b7d373efadaaec0286e87a5fe21e6db26

See more details on using hashes here.

File details

Details for the file fastfilter-0.0.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastfilter-0.0.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a4fcd2d3b112d90dbfb16ac03d6b8cf0fdd440bc4d6e617a3fd2ef0225f4c3d9
MD5 e9b1155342620aff4a263df151073cf1
BLAKE2b-256 f76c247666e861e25e83372453b980a4799181a213c9649cab34b36908793fb4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page