Skip to main content

A bit of extra usability for sqlite

Project description

fastlite

fastlite provides some little quality-of-life improvements for interactive use of the wonderful sqlite-utils library. It’s likely to be particularly of interest to folks using Jupyter.

Install

pip install fastlite

Overview

from fastlite import *
from fastcore.utils import *
from fastcore.net import urlsave

We demonstrate fastlite‘s features here using the ’chinook’ sample database.

url = 'https://github.com/lerocha/chinook-database/raw/master/ChinookDatabase/DataSources/Chinook_Sqlite.sqlite'
path = Path('chinook.sqlite')
if not path.exists(): urlsave(url, path)

db = database("chinook.sqlite")

Databases have a t property that lists all tables:

dt = db.t
dt
Album, Artist, Customer, Employee, Genre, Invoice, InvoiceLine, MediaType, Playlist, PlaylistTrack, Track

You can use this to grab a single table…:

artist = dt.artists
artist
<Table artists (does not exist yet)>
artist = dt.Artist
artist
<Table Artist (ArtistId, Name)>

…or multiple tables at once:

dt['Artist','Album','Track','Genre','MediaType']
[<Table Artist (ArtistId, Name)>,
 <Table Album (AlbumId, Title, ArtistId)>,
 <Table Track (TrackId, Name, AlbumId, MediaTypeId, GenreId, Composer, Milliseconds, Bytes, UnitPrice)>,
 <Table Genre (GenreId, Name)>,
 <Table MediaType (MediaTypeId, Name)>]

It also provides auto-complete in Jupyter, IPython, and nearly any other interactive Python environment:

You can check if a table is in the database already:

'Artist' in dt
True

Column work in a similar way to tables, using the c property:

ac = artist.c
ac
ArtistId, Name

Auto-complete works for columns too:

Columns, tables, and view stringify in a format suitable for including in SQL statements. That means you can use auto-complete in f-strings.

qry = f"select * from {artist} where {ac.Name} like 'AC/%'"
print(qry)
select * from "Artist" where "Artist"."Name" like 'AC/%'

You can view the results of a select query using q:

db.q(qry)
[{'ArtistId': 1, 'Name': 'AC/DC'}]

Views can be accessed through the v property:

album = dt.Album

acca_sql = f"""select {album}.*
from {album} join {artist} using (ArtistId)
where {ac.Name} like 'AC/%'"""

db.create_view("AccaDaccaAlbums", acca_sql, replace=True)
acca_dacca = db.q(f"select * from {db.v.AccaDaccaAlbums}")
acca_dacca
[{'AlbumId': 1,
  'Title': 'For Those About To Rock We Salute You',
  'ArtistId': 1},
 {'AlbumId': 4, 'Title': 'Let There Be Rock', 'ArtistId': 1}]

Dataclass support

A dataclass type with the names, types, and defaults of the tables is created using dataclass():

album_dc = album.dataclass()

Let’s try it:

album_obj = album_dc(**acca_dacca[0])
album_obj
Album(AlbumId=1, Title='For Those About To Rock We Salute You', ArtistId=1)

You can get the definition of the dataclass using fastcore’s dataclass_src – everything is treated as nullable, in order to handle auto-generated database values:

src = dataclass_src(album_dc)
hl_md(src, 'python')
@dataclass
class Album:
    AlbumId: int | None = None
    Title: str | None = None
    ArtistId: int | None = None

Because dataclass() is dynamic, you won’t get auto-complete in editors like vscode – it’ll only work in dynamic environments like Jupyter and IPython. For editor support, you can export the full set of dataclasses to a module, which you can then import from:

create_mod(db, 'db_dc')
from db_dc import Track
Track()
Track(TrackId=None, Name=None, AlbumId=None, MediaTypeId=None, GenreId=None, Composer=None, Milliseconds=None, Bytes=None, UnitPrice=None)

Indexing into a table does a query on primary key:

dt.Track[1]
Track(TrackId=1, Name='For Those About To Rock (We Salute You)', AlbumId=1, MediaTypeId=1, GenreId=1, Composer='Angus Young, Malcolm Young, Brian Johnson', Milliseconds=343719, Bytes=11170334, UnitPrice=0.99)

There’s a shortcut to select from a table – just call it as a function. If you’ve previously called dataclass(), returned iterms will be constructed using that class by default. There’s lots of params you can check out, such as limit:

album(limit=2)
[Album(AlbumId=1, Title='For Those About To Rock We Salute You', ArtistId=1),
 Album(AlbumId=2, Title='Balls to the Wall', ArtistId=2)]

Pass a truthy value as with_pk and you’ll get tuples of primary keys and records:

album(with_pk=1, limit=2)
[(1,
  Album(AlbumId=1, Title='For Those About To Rock We Salute You', ArtistId=1)),
 (2, Album(AlbumId=2, Title='Balls to the Wall', ArtistId=2))]

Indexing also uses the dataclass by default:

album[5]
Album(AlbumId=5, Title='Big Ones', ArtistId=3)

If you set xtra fields, then indexing is also filtered by those. As a result, for instance in this case, nothing is returned since album 5 is not created by artist 1:

album.xtra(ArtistId=1)

try: album[5]
except NotFoundError: print("Not found")
Not found

The same filtering is done when using the table as a callable:

album()
[Album(AlbumId=1, Title='For Those About To Rock We Salute You', ArtistId=1),
 Album(AlbumId=4, Title='Let There Be Rock', ArtistId=1)]

Core design

The following methods accept **kwargs, passing them along to the first dict param:

  • create
  • transform
  • transform_sql
  • update
  • insert
  • upsert
  • lookup

We can access a table that doesn’t actually exist yet:

cats = dt.cats
cats
<Table cats (does not exist yet)>

We can use keyword arguments to now create that table:

cats.create(id=int, name=str, weight=float, uid=int, pk='id')
hl_md(cats.schema, 'sql')
CREATE TABLE [cats] (
   [id] INTEGER PRIMARY KEY,
   [name] TEXT,
   [weight] FLOAT,
   [uid] INTEGER
)

It we set xtra then the additional fields are used for insert, update, and delete:

cats.xtra(uid=2)
cat = cats.insert(name='meow', weight=6)

The inserted row is returned, including the xtra ‘uid’ field.

cat
{'id': 1, 'name': 'meow', 'weight': 6.0, 'uid': 2}

Using ** in update here doesn’t actually achieve anything, since we can just pass a dict directly – it’s just to show that it works:

cat['name'] = "moo"
cat['uid'] = 1
cats.update(**cat)
cats()
[{'id': 1, 'name': 'moo', 'weight': 6.0, 'uid': 2}]

Attempts to update or insert with xtra fields are ignored.

An error is raised if there’s an attempt to update a record not matching xtra fields:

cats.xtra(uid=1)
try: cats.update(**cat)
except NotFoundError: print("Not found")
Not found

This all also works with dataclasses:

cats.xtra(uid=2)
cats.dataclass()
cat = cats[1]
cat
Cats(id=1, name='moo', weight=6.0, uid=2)
cats.drop()
cats
<Table cats (does not exist yet)>

Alternatively, you can create a table from a class. If it’s not already a dataclass, it will be converted into one. In either case, the dataclass will be created (or modified) so that None can be passed to any field (this is needed to support fields such as automatic row ids).

class Cat: id:int; name:str; weight:float; uid:int
cats = db.create(Cat)
hl_md(cats.schema, 'sql')
CREATE TABLE [cat] (
   [id] INTEGER PRIMARY KEY,
   [name] TEXT,
   [weight] FLOAT,
   [uid] INTEGER
)
cat = Cat(name='咪咪', weight=9)
cats.insert(cat)
Cat(id=1, name='咪咪', weight=9.0, uid=None)
cats.drop()

Manipulating data

We try to make the following methods as flexible as possible. Wherever possible, they support Python dictionaries, dataclasses, and classes.

.insert()

Creates a record. In the name of flexibility, we test that dictionaries, dataclasses, and classes all work. Returns an instance of the updated record.

Insert using a dictionary.

cats.insert({'name': 'Rex', 'weight': 12.2})
Cat(id=1, name='Rex', weight=12.2, uid=UNSET)

Insert using a dataclass.

CatDC = cats.dataclass()
cats.insert(CatDC(name='Tom', weight=10.2))
Cat(id=2, name='Tom', weight=10.2)

Insert using a standard Python class

cat = cats.insert(Cat(name='Jerry', weight=5.2))

.update()

Updates a record using a Python dict, dataclasses, and classes all work and returns an instance of the updated record.

Updating from a Python dict:

cats.update(dict(id=cat.id, name='Jerry', weight=6.2))
Cat(id=3, name='Jerry', weight=6.2)

Updating from a dataclass:

cats.update(CatDC(id=cat.id, name='Jerry', weight=6.3))
Cat(id=3, name='Jerry', weight=6.3)

Updating using a class:

cats.update(Cat(id=cat.id, name='Jerry', weight=5.7))
Cat(id=3, name='Jerry', weight=5.7)

.delete()

Removing data is done by providing the primary key value of the record.

# Farewell Jerry!
cats.delete(cat.id)
<Table cat (id, name, weight)>

Importing CSV/TSV/etc

You can pass a file name, string, bytes, or open file handle to import_file to import a CSV:

db = Database(":memory:")
csv_data = """id,name,age
1,Alice,30
2,Bob,25
3,Charlie,35"""

table = db.import_file("people", csv_data)
table()
[{'id': 1, 'name': 'Alice', 'age': 30},
 {'id': 2, 'name': 'Bob', 'age': 25},
 {'id': 3, 'name': 'Charlie', 'age': 35}]

Diagrams

If you have graphviz installed, you can create database diagrams:

diagram(db.tables)

Pass a subset of tables to just diagram those. You can also adjust the size and aspect ratio.

diagram(db.t['Artist','Album','Track','Genre','MediaType'], size=8, ratio=0.4)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastlite-0.0.13.tar.gz (20.6 kB view details)

Uploaded Source

Built Distribution

fastlite-0.0.13-py3-none-any.whl (16.5 kB view details)

Uploaded Python 3

File details

Details for the file fastlite-0.0.13.tar.gz.

File metadata

  • Download URL: fastlite-0.0.13.tar.gz
  • Upload date:
  • Size: 20.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for fastlite-0.0.13.tar.gz
Algorithm Hash digest
SHA256 e3039dd3ef144953691ea93ed902e46885a7d904feae92a11c835196693ad370
MD5 5b0d2f5fe151140b3c22923870d2fa5c
BLAKE2b-256 9286c6392b7d6fbfa3f5eb22054645ec7be550a21bfb00ce9586ba2bc18e12d2

See more details on using hashes here.

File details

Details for the file fastlite-0.0.13-py3-none-any.whl.

File metadata

  • Download URL: fastlite-0.0.13-py3-none-any.whl
  • Upload date:
  • Size: 16.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for fastlite-0.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 8a8fac42ff71cdebd03272a8a2d8564c266dda1510b8d3e2dfaeae8a69c3e834
MD5 dc5a5467ee453ee39d337f64b1a2a080
BLAKE2b-256 6cb40d9e28d1de34378033ce6305f531c2e9dd4adc00915d57f83d1acfa805d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page