Skip to main content

fast linear transforms in Python

Project description

fastmat

Version Status fastmat Python wheels

License Python versions

Implementation Coverage Status GitHub issues Documentation Status

Description

Scientific computing requires handling large composed or structured matrices. Fastmat is a framework for handling large composed or structured matrices. It allows expressing and using them in a mathematically intuitive way while storing and handling them internally in an efficient way. This approach allows huge savings in computational time and memory requirements compared to using dense matrix representations.

Dependencies

  • Python 2.7, Python >=3.5
  • Numpy >= 1.16.3
  • Scipy >= 1.0
  • Cython >= 0.29
  • soft dependencies:
    • matplotlib: for demos and tools that make use of plotting functions

Distribution

Binary wheels are provided for Python >=3.5 for linux, windows and mac, as well as for x86 and ARM architectures.

For all systems, for which no wheels are provided, you may still install fastmat from the soruce distribution.

Authors & Contact Information

Citation / Acknowledgements

If you use fastmat, or parts of it, for commercial purposes you are required to acknowledge the use of fastmat visibly to all users of your work and put a reference to the project and the EMS Group at TU Ilmenau.

If you use fastmat for your scientific work you are required to mention the EMS Group at TU Ilmenau and cite the following publication affiliated with the project:

Christoph W. Wagner and Sebastian Semper and Jan Kirchhof, fastmat: Efficient linear transforms in Python, SoftwareX, 2022, https://doi.org/10.1016/j.softx.2022.101013

    @article{Wagner_2022,
        doi = {10.1016/j.softx.2022.101013},
        url = {https://doi.org/10.1016%2Fj.softx.2022.101013},
        year = {2022},
        month = {jun},
        publisher = {Elsevier {BV}},
        volume = {18},
        pages = {101013},
        author = {Christoph W. Wagner and Sebastian Semper and Jan Kirchhof},
        title = {fastmat: Efficient linear transforms in Python},
        journal = {{SoftwareX}}
    } 

Installation

fastmat currently supports Linux, Windows and Mac OS. Lately it also has been seen on ARM cores coming in a Xilinx ZYNQ FPGA SoC shell. We encourage you to go ahead trying other platforms as the aforementioned as well and are very happy if you share your experience with us, allowing us to keep the list updated.

Installing with pip:

fastmat is included in the Python Package Index (PyPI) and can be installed from the commandline by running one easy and straightforward command: pip install fastmat

When installing with pip all dependencies of the package will be installed along. With release 0.1.1 python wheels will be offered for many versions greatly improving installation time and effort.

Bulding from source

Building binaries has been developed and tested for the use

Manually installing from source

  • download the source distribution from our github repository: https://github.com/EMS-TU-Ilmenau/fastmat/archive/stable.zip
  • unpack its contents and navigate to the project root directory
  • run pip install . to install fastmat on your computer
  • you may also install fastmat without pip, using the offered makefile:
    • type make install to install fastmat on your computer
    • If you intend to install the package locally for your user type make install MODE=--user instead
    • You may add a version specifier for all make targets that directly or indirectly invoke Python: make install PYTHON=python2 make compile PYTHON=python3
    • If you only would like to compile the package to use it from this local directory without installing it, type make compile
    • An uninstallation of a previously run make installis possible, provided the installation log file setup.files has been preserved Invoking make uninstall without a local setup.files causes another installation for generating the setup file log prior to uninstalling
  • NOTE: Windows users If you intent on building fastmat from source on a windows platform, make sure you have installed a c compiler environment and make interpreter. One way to accomplish this is to install these tools for Python 2.7 (you may also chose different ones, of course):
    • Intel Distribution for Python 2.7
    • Microsoft Visual C++ Compiler 9.0 for Python 2.7
    • GNU make for Windows 3.81 or newer
    • depending on your system: The relevant header files

Demos

Feel free to have a look at the demos in the demo/ directory of the source distribution. Please make sure to have fastmat already installed when running these.

Please note that the edgeDetect demo requires the Python Imaging Library (PIL) installed and the SAFT demos do compile a cython-core of a user defined matrix class beforehand thus having a delaying the first time they're executed.

Documentation / HELP !

Please have a look at the documentation, which is included in the source distribution at github or may be built locally on your machine by running make doc

If you experience any trouble please do not hesitate to contact us or to open an issue on our github projectpage: https://github.com/EMS-TU-Ilmenau/fastmat

FAQ

Please check out our project documentation at readthedocs.

Windows: Installation fails with various "file not found" errors

Often, this is caused by missing header files. Unfortunately windows ships without a c-compiler and the header files necessary to compile native binary code. If you use the Intel Distribution for Python this can be resolved by installing the Visual Studio Build tools with the version as recommended by the version of the Intel Distribution for Python that you are using.

Issue not resolved yet?

Please contact us or leave your bug report in the issue section. Thank You!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastmat-0.2.2.post0.tar.gz (169.3 kB view details)

Uploaded Source

Built Distributions

fastmat-0.2.2.post0-cp312-cp312-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

fastmat-0.2.2.post0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastmat-0.2.2.post0-cp312-cp312-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastmat-0.2.2.post0-cp312-cp312-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fastmat-0.2.2.post0-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

fastmat-0.2.2.post0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastmat-0.2.2.post0-cp311-cp311-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastmat-0.2.2.post0-cp311-cp311-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastmat-0.2.2.post0-cp310-cp310-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

fastmat-0.2.2.post0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastmat-0.2.2.post0-cp310-cp310-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastmat-0.2.2.post0-cp310-cp310-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastmat-0.2.2.post0-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

fastmat-0.2.2.post0-cp39-cp39-win32.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86

fastmat-0.2.2.post0-cp39-cp39-manylinux2010_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

fastmat-0.2.2.post0-cp39-cp39-manylinux2010_i686.whl (11.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

fastmat-0.2.2.post0-cp39-cp39-manylinux1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.9

fastmat-0.2.2.post0-cp39-cp39-manylinux1_i686.whl (11.4 MB view details)

Uploaded CPython 3.9

fastmat-0.2.2.post0-cp39-cp39-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastmat-0.2.2.post0-cp39-cp39-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fastmat-0.2.2.post0-cp38-cp38-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

fastmat-0.2.2.post0-cp38-cp38-win32.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86

fastmat-0.2.2.post0-cp38-cp38-manylinux2010_x86_64.whl (13.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

fastmat-0.2.2.post0-cp38-cp38-manylinux2010_i686.whl (12.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

fastmat-0.2.2.post0-cp38-cp38-manylinux1_x86_64.whl (13.0 MB view details)

Uploaded CPython 3.8

fastmat-0.2.2.post0-cp38-cp38-manylinux1_i686.whl (12.3 MB view details)

Uploaded CPython 3.8

fastmat-0.2.2.post0-cp38-cp38-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

fastmat-0.2.2.post0-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

fastmat-0.2.2.post0-cp37-cp37m-win32.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86

fastmat-0.2.2.post0-cp37-cp37m-manylinux2010_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

fastmat-0.2.2.post0-cp37-cp37m-manylinux2010_i686.whl (10.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

fastmat-0.2.2.post0-cp37-cp37m-manylinux1_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.7m

fastmat-0.2.2.post0-cp37-cp37m-manylinux1_i686.whl (10.4 MB view details)

Uploaded CPython 3.7m

fastmat-0.2.2.post0-cp37-cp37m-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

fastmat-0.2.2.post0-cp36-cp36m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

fastmat-0.2.2.post0-cp36-cp36m-win32.whl (1.7 MB view details)

Uploaded CPython 3.6m Windows x86

fastmat-0.2.2.post0-cp36-cp36m-manylinux2010_x86_64.whl (10.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

fastmat-0.2.2.post0-cp36-cp36m-manylinux2010_i686.whl (10.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

fastmat-0.2.2.post0-cp36-cp36m-manylinux1_x86_64.whl (10.6 MB view details)

Uploaded CPython 3.6m

fastmat-0.2.2.post0-cp36-cp36m-manylinux1_i686.whl (10.1 MB view details)

Uploaded CPython 3.6m

fastmat-0.2.2.post0-cp36-cp36m-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file fastmat-0.2.2.post0.tar.gz.

File metadata

  • Download URL: fastmat-0.2.2.post0.tar.gz
  • Upload date:
  • Size: 169.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.2

File hashes

Hashes for fastmat-0.2.2.post0.tar.gz
Algorithm Hash digest
SHA256 6c10ab19f2bd52a1e9182705f05b32fda3465b4137fc36f5036be43cbd81f899
MD5 fcf6c2c81e908e031c5895f876861be2
BLAKE2b-256 2f7ef275aac0093a9cca893a5b8c367c4754cf41dcc8eb046ea83a68be0a9ab0

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 68159d4e12e186b04ef0f5dbbf4ec0070474ed08eee3001de83bcb566f9ba645
MD5 03916633daf648f63a9c19ecde7959dd
BLAKE2b-256 af945e2820a5916874599665584445d4cfc11b31c03054531a5cd46a44f52977

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68ed314953c5be924a010df82360ea26b4386654973c56e65897e00b93c6faa3
MD5 46e019c5a4820c7e7aa349f0b9b453b9
BLAKE2b-256 6e8afaec541e607f29c10f96bf019c75ea93e42b18b5e69e3cfd47b47fe85412

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f06a671a3638434a299a8be11a54074046c22b1d2fd47a5ad688eb97410f2ed4
MD5 c85773c0f0be518bcdd48e17861d3d64
BLAKE2b-256 aa2c7159655423bb9bbfa301d1d0a67435fd3bafb19ba2a139cf8cbcdd562207

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b7493a80ac1a957883c793ded70b747d4540cd431e62e4f134cad28a09c03c31
MD5 10f834fbf364d2d61310eaf3a944831f
BLAKE2b-256 31019197b547b90d367b7b5c377fda12317b121b88d6089237a225e71ed69f24

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5164e73268100a88a81be7351c1a8db1ecc9d78c22b5d6b8afa5a393eb0c8128
MD5 3e1b990426d00c88dfdda9a439eab28d
BLAKE2b-256 1f650dfa485602affa354a74f2830f9fb8c6715795eb2082b0430416a8b3f55a

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4919254a5bb52d5a5c1c8796c15195f8bd4dbc2469a7d49988a8af1a0427b790
MD5 04045aa2936106141bad9eb10f73ec88
BLAKE2b-256 ed748e57d817f252e3dd04c778890e60a831ae4c6c68758c4ad54ed16e8ea39a

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b41ca5e5d9a82ea1b068d356a98057b3847bb290879b76c4e77b7cd7fd18ea7f
MD5 d395ca988e08f115df70630b4f89ab19
BLAKE2b-256 891ceaa834f1cebff76bacb999af19ea8fa27ec25c071a427562cd8be1328969

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 41353b3346a0cae20d92b4f2721693a704b9c8eb83a448ff1be526fc30095e88
MD5 db2f3c58d12c971e3b7c31c89e372e35
BLAKE2b-256 1c17998ce2f3b50df0ff4ecf204a1292374128edcfd7249f9ba320fef0f81873

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0003a549d79d802653bdad8999fcc3c3cc7fa6a8131b83c3fd210e93553f2f83
MD5 302ba63a62334afb7c268a1e946d85b3
BLAKE2b-256 fe4dc4151b8d14250b935f6bf656c8db403930bff04283f68d16f4e3c9d5dccb

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca6340923fc117fab19204dc572af41423806927a8b7f48dd13f56653524950f
MD5 3e991299340585d0e782d7e5e1fb9b55
BLAKE2b-256 f4adb87f2fe9e5a225d7b674eb1fba760c0114a2fefc27384d3b6568b6b74051

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9809275a7147285a63cbf61cd47b7f7af622bed23c455015d3c4c2d6f9f123d6
MD5 211772b4bc341061141a5eae6edc48f5
BLAKE2b-256 0821516e73c99ff74b8305331e2d3ac3b75e595168f68adbd406cf1e255cb626

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa571b0ef294f41a630b07e1d83f6ddb69821a035892b2bd4b50430b7a1342c6
MD5 f617c42e563013498951e844bf2280c4
BLAKE2b-256 b050dccd9837bd2c1b33ff75b6211a6881af7953b478a00b14320eb8a32df373

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cfed6c68dc70414880177f9332514b1de0764a0b323cad7337c8732438247473
MD5 c0769272c5f69df303712a547697dd95
BLAKE2b-256 3cb2a80ca491741c1bddb403103c2213e7555ac213052162c8d593dd784928b2

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9c35e5d0425f677b98205ef7afe7aa396ae9585013f0714317db470838111c55
MD5 8e2436188c8130f1db3ec7a50503ba05
BLAKE2b-256 4c6c88527d78cb29e307e897297b4f2934213c6ca8920d2aeed4d0ef554eb8e5

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ae29ad04b853adc8b9845186ec297151a95bed9e9062233ede1f00401b2e3e51
MD5 41426c746a0b12fbfec1c9ba79ac3cbb
BLAKE2b-256 3c03406b4d24185d2cbf9f12817bfb8d968cf85a4001892769d12d3b8d96c489

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp39-cp39-manylinux2010_i686.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8ea3993fde7c38be18ebe86d65d844e79c259bd7a45f6a400e060aafe8c495e0
MD5 6043374880b0249330c67a2051a47b05
BLAKE2b-256 f1545da3bff8009de48aed08658320b72b8e6abccae946a5ba0bb38caf66b62e

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f04e0c4fa8a476b2b5e30930d60ee5cd4a46745c757070d0aea69769c55bfdbc
MD5 6380030150ff0c4f748e147e66cc34b0
BLAKE2b-256 5d2c85d4215f58c4c9eaf168a45da6a840a4035e44231c2dd629ddab4dcc7a6a

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp39-cp39-manylinux1_i686.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f33c9203864e20ac8f04154779c8cb90bce6fc6a0028502555378268215798cb
MD5 34410f48f80e246d02966c9ecb8322c9
BLAKE2b-256 18368efdf23487246e7b14d7cb5ed64e8f44faaddceebf20354b79a049565d94

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c78ff22a1b072e049b1763363bfef5827b8eca97426d89b787d21253a5199399
MD5 427839bafdf822df1136f10c3ec6f733
BLAKE2b-256 4425a8d44cbe623ccdf7d9e50518601b6f332a950bd98a06ca1e556f47b9eddc

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b1c640d6390cd1bef7b17170476b8beccaf8335c11adad00592eb34339942739
MD5 3d82ae54b478bcfe583092bc2d79a61d
BLAKE2b-256 d39e26e0ec2f7ef4f495a32b7c4b2fd38f4321ae48d06248d790afb571632957

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 877af7ecd815827f016507dbd0191f1eca03bfceecc2fd7a4c5b0fde60cf077f
MD5 5ede63734cb9fe20a275c5688fd4fc60
BLAKE2b-256 e67e5126e4b199ebf7c6c363fa280c12c5cf3f3a61f7cce67c5f8efb17b57729

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5ddf263d6ba653130faf365fbe8999547141e64457f9dfbd0b273a1379831427
MD5 a776518c93fa737af81b5e38ae138c2b
BLAKE2b-256 247caa6f88855f4918d890f361d6f74b238c2e1057bbedb94a916beb6a140a76

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5703ea805405f773ce05de39cec7a473195e9feaa0b5bbc91f1d28818f4e72ac
MD5 200579205d6558a62c1306484e8c9f80
BLAKE2b-256 4e5ecd24f616f1aa6ff6ea4af3250afccc692a4f9e85a65607b772f49e939da9

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp38-cp38-manylinux2010_i686.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 792729d1922129065758b60932155ba295fc4666466bf4d3e5e5f06825c60898
MD5 0514137990065770f61dbee685830f5a
BLAKE2b-256 7a4acc84cab5edf0b9f521ed16930ccf00f36c8a89ec774b700b62c313a03f16

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f3dbd76dede4cddff78166a007c645afba6186faef5980dd80c2a84a88f21e95
MD5 cb7d20530159f8bdb286e20c58e47409
BLAKE2b-256 e50d8193ef9b3489307fcfc5ff45cc4c8feca2cda16bcc8a2e14754c4ac6de78

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp38-cp38-manylinux1_i686.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 2e33e048c4c55a967ac3593530f50dd1c5d393b8002ccf652f4abcee07feeca3
MD5 1a088e2cf7d3c992f4a6aca2ee91341c
BLAKE2b-256 e519eb88e7c6f5b5560ec1fadb1b8e681a9156d2ffbcf8815b7b585c05b21642

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3241dfdd611bcf23ac0f7a8406e26f963abe31962958b15ef290036bb072ec25
MD5 06878584275187c67450d7c544abfaad
BLAKE2b-256 e8724fc362852ded235142b3fa0c1f995c66e90b9883cef1e95e60953632b8f2

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a9208cda9c1f9a65bdaf97063fe00088fcab743f4f9ed8309847f39bccccb6b1
MD5 7b2da5a8fb8b6446fd39eb3588d2deb8
BLAKE2b-256 ef6344e086d3d7f062e1781479246c897e5a2f0a6dbd83acb256c8d600eb851b

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ff0daa92825e210e0a9edd5f181fafe6ccddeeaf9b70a67dca4d6446a4ae20b9
MD5 862e3876b2b1edd7f008baeb7b0b3171
BLAKE2b-256 04c49c48accd5f3d01a0d2579b437a8e987eedd2f8b40607ba54c3491fc8d09b

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 50c6ecbcf5a24f74d5f4069364993b916e4fd7fdb79e2f2be351875424904e7b
MD5 e5db23bc251076969ca21f6d26442e9a
BLAKE2b-256 50291beed45a7fbf36d421d46b255c77a6c5c61860119775a4a8f178399220b4

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9dd87bb3471d6ec3010b75f498fca41a8da33b891fa31af43f1fac3610620dd1
MD5 ee074d87fc5289539d8063169d27131a
BLAKE2b-256 48a6db1a3a3fe689a02e8d8d56f88d88f88a7594502299add8da4c113f088799

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e9c9b41c48e81646748914cd02ecc84c97d966a9512989fe252ed49a63b79b8e
MD5 f797178115b0e3fac1af59998d9ab17d
BLAKE2b-256 daf02a59e1147a84088e19a4929bf9d56709169838b016582eb7b60931f7aaed

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp37-cp37m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 057e3e2a6da90b2cd1735364f56fc60cf67e61c3a59afb52edea49213dd1aac0
MD5 06fbdcb72e8d5cf544c32e421c83e36c
BLAKE2b-256 1fb79185ccb3f43295058d09f8ac5e04c478492c5248d3a37dae0b927efc8454

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7704fde2d191700769a17cd596ec025f6301cf1ee59f54004f93efc8c3f33801
MD5 01f83c03720362e7fc144d4e167e7729
BLAKE2b-256 e75d087fee1ca3b106b575921a4ace1260f44b8fd9aa862610a25120256423a6

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f3756f9df05ef908b6fcaba4a5fbab51f1756dbff9e312695c5ee4379b54b961
MD5 4779e4dd3d4393ea39dabc2f80b52d72
BLAKE2b-256 7b9b2617bc6ab04a154ba52a9be405aa1885daaf973df8c5c10c863a84869425

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 8825c4e6e85e6f771826e95d3cbd7eaf1e07ddcbc28cd8b11e57d1951a5286ce
MD5 574ff82bd0967185c42d9ea3a0d037b7
BLAKE2b-256 87ce0491caff5770782630ed04677e441da48b8b9dedb09efcb48d6fdc980b7b

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 310b02cd39564a31e9363ada80564874fd336e6ecc73bba0475821260b53ee96
MD5 d64d6f3590b1cf88f26e787f37cedf56
BLAKE2b-256 5fe08c566977bb101b7b7b5615ca57af660d3041e2ce679cfb7ab159f533cc22

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp36-cp36m-manylinux2010_i686.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 aa72e457216760c68150e6e1e5ab72945a4bd91f9c47277ee4ef485b570a8395
MD5 c2f39401a5d564c4dadccd3bc763f393
BLAKE2b-256 5c29678b671065caea54ee828be0abc1358eaba48f3cc61d44ee0a6f55d031a1

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4c5acfcaa074bd5724b725d89a5343315bb8df9f8f0d1c6a334928747a6d5241
MD5 8cb6924925868981123056d051e82051
BLAKE2b-256 33a789b6126bc8aed106fe77156a946a8e29d51b33bb22b80af88915a0f5a090

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 971bf64e01e1ce7c91eeb1f31172cb36b3375e14283fa877302c5faf89279ec2
MD5 0aa69bdff7bd549a856614d611e667b8
BLAKE2b-256 00c5151c26ee4da978807a4757bdf3378666288d32b79e68f0992f7d2852cf62

See more details on using hashes here.

File details

Details for the file fastmat-0.2.2.post0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastmat-0.2.2.post0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab542cbcad02e5d95a9a357914d62eb0bb40f46ebb225543c714a41ff1ba23b0
MD5 e0e3f9cd997e1bb0fe2bc3ec55b4d578
BLAKE2b-256 8fa65d72d3ec515f58019ed82bb2694167a91a0be44db4fb210555813e7e7fc4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page