Skip to main content

Fast Ancestry Estimation

Project description

fastmixture (v0.93.1)

fastmixture is a new software for estimating ancestry proportions in unrelated individuals. It is significantly faster than previous model-based software while providing accurate and robust ancestry estimates.

Table of Contents

Installation

# Build and install via PyPI
pip install fastmixture

# or download source and install via pip
git clone https://github.com/Rosemeis/fastmixture.git
cd fastmixture
pip install .

# or download source and install in new Conda environment
git clone https://github.com/Rosemeis/fastmixture.git
conda env create -f environment.yml
conda activate fastmixture


# You can now run the program with the `fastmixture` command

Citation

Please cite our preprint on BioRxiv.

Usage

fastmixture requires input data in binary PLINK format.

  • Choose the value of K that best fits your data. We recommend performing principal component analysis (PCA) first as an exploratory analysis before running fastmixture.
  • Use multiple seeds for your analysis to ensure robust and reliable results (e.g. ≥ 5).
# Using binary PLINK files for K=3
fastmixture --bfile data --K 3 --threads 32 --seed 1 --out test

# Outputs Q and P files (test.K3.s1.Q and test.K3.s1.P)

Supervised

A supervised mode is available in fastmixture using --supervised. Provide a file of population assignments for individuals as integers in a single column file. Unknown or admixed individuals must be given a value of '0'.

# Using binary PLINK files for K=3
fastmixture --bfile data --K 3 --threads 32 --seed 1 --out super.test --supervised data.labels

# Outputs Q and P files (super.K3.s1.Q and super.K3.s1.P)

Extra options

  • --iter, specify maximum number of iterations for EM algorithm (1000)
  • --tole, specify tolerance for convergence in EM algorithm (0.5)
  • --batches, specify number of initial mini-batches (32)
  • --check, specify number of iterations performed before convergence check (5)
  • --power, specify number of power iterations in SVD (11)
  • --chunk, number of SNPs to process at a time in randomized SVD (8192)
  • --als-iter, specify maximum number of iterations in ALS procedure (1000)
  • --als-tole, specify tolerance for convergence in ALS procedure (1e-4)
  • --no-freqs, do not save ancestral allele frequencies (P-matrix)
  • --random-init, random parameter initialization instead of SVD
  • --safety, only perform safety updates

License

This project is licensed under the GNU General Public License v3.0 - see the LICENSE file for details

Authors and Acknowledgements

  • Jonas Meisner, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen
  • Cindy Santander, Computational and RNA Biology, University of Copenhagen
  • Alba Refoyo Martinez, Center for Health Data Science, University of Copenhagen

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastmixture-0.93.1.tar.gz (488.4 kB view details)

Uploaded Source

File details

Details for the file fastmixture-0.93.1.tar.gz.

File metadata

  • Download URL: fastmixture-0.93.1.tar.gz
  • Upload date:
  • Size: 488.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for fastmixture-0.93.1.tar.gz
Algorithm Hash digest
SHA256 b05e7aee8ddff6512d4a3e4723afde696d0988c4cb4bf7bd9b4e483abd606e6b
MD5 fcfcdd7fdb10e9cd4c1e8c93518c5291
BLAKE2b-256 50f7b54dd66f91eaad7c742e6750c109b818a1f24ef0bc56145274db5710ac4d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page