Skip to main content

Fast Ancestry Estimation

Project description

fastmixture (v0.93.3)

fastmixture is a new software for estimating ancestry proportions in unrelated individuals. It is significantly faster than previous model-based software while providing accurate and robust ancestry estimates.

Table of Contents

Installation

# Build and install via PyPI
pip install fastmixture

# or download source and install via pip
git clone https://github.com/Rosemeis/fastmixture.git
cd fastmixture
pip install .

# or download source and install in new Conda environment
git clone https://github.com/Rosemeis/fastmixture.git
conda env create -f environment.yml
conda activate fastmixture


# You can now run the program with the `fastmixture` command

Citation

Please cite our preprint on BioRxiv.

Usage

fastmixture requires input data in binary PLINK format.

  • Choose the value of K that best fits your data. We recommend performing principal component analysis (PCA) first as an exploratory analysis before running fastmixture.
  • Use multiple seeds for your analysis to ensure robust and reliable results (e.g. ≥ 5).
# Using binary PLINK files for K=3
fastmixture --bfile data --K 3 --threads 32 --seed 1 --out test

# Outputs Q and P files (test.K3.s1.Q and test.K3.s1.P)

Supervised

A supervised mode is available in fastmixture using --supervised. Provide a file of population assignments for individuals as integers in a single column file. Unknown or admixed individuals must be given a value of '0'.

# Using binary PLINK files for K=3
fastmixture --bfile data --K 3 --threads 32 --seed 1 --out super.test --supervised data.labels

# Outputs Q and P files (super.K3.s1.Q and super.K3.s1.P)

Extra options

  • --iter, specify maximum number of iterations for EM algorithm (1000)
  • --tole, specify tolerance for convergence in EM algorithm (0.5)
  • --batches, specify number of initial mini-batches (32)
  • --check, specify number of iterations performed before convergence check (5)
  • --power, specify number of power iterations in SVD (11)
  • --chunk, number of SNPs to process at a time in randomized SVD (8192)
  • --als-iter, specify maximum number of iterations in ALS procedure (1000)
  • --als-tole, specify tolerance for convergence in ALS procedure (1e-4)
  • --no-freqs, do not save ancestral allele frequencies (P-matrix)
  • --random-init, random parameter initialization instead of SVD
  • --safety, only perform safety updates

License

This project is licensed under the GNU General Public License v3.0 - see the LICENSE file for details

Authors and Acknowledgements

  • Jonas Meisner, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen
  • Cindy Santander, Computational and RNA Biology, University of Copenhagen
  • Alba Refoyo Martinez, Center for Health Data Science, University of Copenhagen

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastmixture-0.93.3.tar.gz (492.1 kB view details)

Uploaded Source

Built Distribution

fastmixture-0.93.3-cp311-cp311-macosx_11_0_arm64.whl (269.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

File details

Details for the file fastmixture-0.93.3.tar.gz.

File metadata

  • Download URL: fastmixture-0.93.3.tar.gz
  • Upload date:
  • Size: 492.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for fastmixture-0.93.3.tar.gz
Algorithm Hash digest
SHA256 bf6c4704a3c5e4cb77a30c65333343e9ee84b7d6db511dc4c6b6cddfe795e1ba
MD5 78445705adb99e513f38cb7d8c0add33
BLAKE2b-256 e80e44ea6375e2dd8a407bfdb809393a045f6e181784f480e867f1d7c0a30cfb

See more details on using hashes here.

File details

Details for the file fastmixture-0.93.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastmixture-0.93.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0dbfe93c40831c0e21896941d96aea8339a93fa9533fd9e8ebc2ee6a93c6b039
MD5 0b59c9f631ee60daf47a5623a5f7e517
BLAKE2b-256 a94db4cfa5d046d3317de143bea3d051b08ecc0a9501866a823674c749dc7326

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page