Skip to main content

A Python package built with sklearn for running multiple classification algorithms to observe their behaviour in as little as 4 lines. This package drastically makes the work of Data Scientists, AI and ML engineers very easy and fast by saving them the physical stress of writing close to 300 lines of code as they would if not for this package.

Project description

fastML


A Python package built with sklearn for running multiple classification algorithms in as little as 4 lines. This package drastically makes the work of Data Scientists, AI and ML engineers very easy and fast by saving them the physical stress of writing close to 200 lines of code as they would if not for this package.

Algorithms


  • Logistic Regression

  • Support Vector Machine

  • Decision Tree Classifier

  • Random Forest Classifier

  • K-Nearest Neighbors

  • NeuralNet Classifier


Getting started


Install the package

pip install fastML

Navigate to folder and install requirements:

pip install -r requirements.txt

Usage

Assign the variables X and Y to the desired columns and assign the variable size to the desired test_size.

X = < df.features >
Y = < df.target >
size = < test_size >

Encoding Categorical Data

Encode target variable if non-numerical:

from fastML import EncodeCategorical
Y = EncodeCategorical(Y)

Using the Neural Net Classifier

from nnclassifier import neuralnet

Running fastML

fastML(X, Y, size, RandonForestClassifier(), DecisionTreeClassifier(), KNeighborsClassifier(), SVC(),
        include_special_classifier = True, # to include the neural net classifier
        special_classifier_epochs=200,
        special_classifier_nature ='fixed'
)

You may also check the test.py file to see the use case.

Example output

Using TensorFlow backend.

    
   __          _   __  __ _      
  / _|        | | |  \/  | |     
 | |_ __ _ ___| |_| \  / | |        
 |  _/ _` / __| __| |\/| | |     
 | || (_| \__ \ |_| |  | | |____ 
 |_| \__,_|___/\__|_|  |_|______|
                                 
                                 

____________________________________________________
____________________________________________________
Accuracy Score for SVC is 
0.9811320754716981


Confusion Matrix for SVC is 
[[16  0  0]
 [ 0 20  1]
 [ 0  0 16]]


Classification Report for SVC is 
              precision    recall  f1-score   support

           0       1.00      1.00      1.00        16
           1       1.00      0.95      0.98        21
           2       0.94      1.00      0.97        16

    accuracy                           0.98        53
   macro avg       0.98      0.98      0.98        53
weighted avg       0.98      0.98      0.98        53



____________________________________________________
____________________________________________________
____________________________________________________
____________________________________________________
Accuracy Score for RandomForestClassifier is 
0.9622641509433962


Confusion Matrix for RandomForestClassifier is 
[[16  0  0]
 [ 0 20  1]
 [ 0  1 15]]


Classification Report for RandomForestClassifier is 
              precision    recall  f1-score   support

           0       1.00      1.00      1.00        16
           1       0.95      0.95      0.95        21
           2       0.94      0.94      0.94        16

    accuracy                           0.96        53
   macro avg       0.96      0.96      0.96        53
weighted avg       0.96      0.96      0.96        53



____________________________________________________
____________________________________________________
____________________________________________________
____________________________________________________
Accuracy Score for DecisionTreeClassifier is 
0.9622641509433962


Confusion Matrix for DecisionTreeClassifier is 
[[16  0  0]
 [ 0 20  1]
 [ 0  1 15]]


Classification Report for DecisionTreeClassifier is 
              precision    recall  f1-score   support

           0       1.00      1.00      1.00        16
           1       0.95      0.95      0.95        21
           2       0.94      0.94      0.94        16

    accuracy                           0.96        53
   macro avg       0.96      0.96      0.96        53
weighted avg       0.96      0.96      0.96        53



____________________________________________________
____________________________________________________
____________________________________________________
____________________________________________________
Accuracy Score for KNeighborsClassifier is 
0.9811320754716981


Confusion Matrix for KNeighborsClassifier is 
[[16  0  0]
 [ 0 20  1]
 [ 0  0 16]]


Classification Report for KNeighborsClassifier is 
              precision    recall  f1-score   support

           0       1.00      1.00      1.00        16
           1       1.00      0.95      0.98        21
           2       0.94      1.00      0.97        16

    accuracy                           0.98        53
   macro avg       0.98      0.98      0.98        53
weighted avg       0.98      0.98      0.98        53



____________________________________________________
____________________________________________________
____________________________________________________
____________________________________________________
Accuracy Score for LogisticRegression is 
0.9811320754716981


Confusion Matrix for LogisticRegression is 
[[16  0  0]
 [ 0 20  1]
 [ 0  0 16]]


Classification Report for LogisticRegression is 
              precision    recall  f1-score   support

           0       1.00      1.00      1.00        16
           1       1.00      0.95      0.98        21
           2       0.94      1.00      0.97        16

    accuracy                           0.98        53
   macro avg       0.98      0.98      0.98        53
weighted avg       0.98      0.98      0.98        53



____________________________________________________
____________________________________________________
Included special classifier with fixed nature
Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_1 (Dense)              (None, 4)                 20        
_________________________________________________________________
dense_2 (Dense)              (None, 16)                80        
_________________________________________________________________
dense_3 (Dense)              (None, 3)                 51        
=================================================================
Total params: 151
Trainable params: 151
Non-trainable params: 0
_________________________________________________________________
Train on 97 samples, validate on 53 samples
Epoch 1/200
97/97 [==============================] - 0s 1ms/step - loss: 1.0995 - accuracy: 0.1443 - val_loss: 1.1011 - val_accuracy: 0.3019
97/97 [==============================] - 0s 63us/step - loss: 0.5166 - accuracy: 0.7010 - val_loss: 0.5706 - val_accuracy: 0.6038
Epoch 100/200
97/97 [==============================] - 0s 88us/step - loss: 0.5128 - accuracy: 0.7010 - val_loss: 0.5675 - val_accuracy: 0.6038
Epoch 200/200
97/97 [==============================] - 0s 79us/step - loss: 0.3375 - accuracy: 0.8969 - val_loss: 0.3619 - val_accuracy: 0.9057
97/97 [==============================] - 0s 36us/step
____________________________________________________
____________________________________________________
Accuracy Score for neuralnet is 
0.8969072103500366


Confusion Matrix for neuralnet is 
[[16  0  0]
 [ 0 16  5]
 [ 0  0 16]]


Classification Report for neuralnet is 
              precision    recall  f1-score   support

           0       1.00      1.00      1.00        16
           1       1.00      0.76      0.86        21
           2       0.76      1.00      0.86        16

    accuracy                           0.91        53
   macro avg       0.92      0.92      0.91        53
weighted avg       0.93      0.91      0.91        53



____________________________________________________
____________________________________________________
                    Model            Accuracy
0                     SVC  0.9811320754716981
1  RandomForestClassifier  0.9622641509433962
2  DecisionTreeClassifier  0.9622641509433962
3    KNeighborsClassifier  0.9811320754716981
4      LogisticRegression  0.9811320754716981
5               neuralnet  0.8969072103500366

Author: Jerry Buaba

Acknowledgements

Thanks to Vincent Njonge, Emmanuel Amoaku, Divine Alorvor, Philemon Johnson, William Akuffo, Labaran Mohammed, Benjamin Acquaah, Silas Bempong and Gal Giacomelli for making this project a success.

Project details


Release history Release notifications | RSS feed

This version

1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastML-1.0.tar.gz (7.8 kB view details)

Uploaded Source

File details

Details for the file fastML-1.0.tar.gz.

File metadata

  • Download URL: fastML-1.0.tar.gz
  • Upload date:
  • Size: 7.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for fastML-1.0.tar.gz
Algorithm Hash digest
SHA256 2f3bdd2ea721bb664f1e201e392649495906e27712b3afbbf19bec75ce3eae7c
MD5 51bcbeeb01b03bdbd9bff3a0841a66f5
BLAKE2b-256 29919ce4fba377cead426f31a544222b96da0df2539f688fd8a1f6e265a3d754

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page