Skip to main content

Morphological image processing for 3D multi-label images.

Project description

Automated Tests PyPI version

fastmorph: multilabel 3D morphological image processing functions.

This is a collection of morphological 3D image operations that are tuned for working with dense 3D labeled images.

We provide the following multithreaded (except where noted) operations:

  • Multi-Label Stenciled Dilation, Erosion, Opening, Closing
  • Grayscale Stenciled Dilation, Erosion, Opening, Closing
  • Multi-Label Spherical Erosion
  • Binary Spherical Dilation, Opening, and Closing
  • Multi-Label Fill Voids (single threaded)

Highlights compared to other libraries:

  • Handles multi-labeled images
  • Multithreaded
  • High performance single-threaded
  • Low memory usage
  • Dilate computes mode of surrounding labels

Disadvantages versus other libraries:

  • Stencil (structuring element) is fixed size 3x3x3 and all on.
import fastmorph

# may be binary or unsigned integer 2D or 3D image
labels = np.load("my_labels.npy")


# multi-label capable morphological operators
# they use a 3x3x3 all on structuring element
# dilate picks the mode of surrounding labels

# by default only background (0) labels are filled
morphed = fastmorph.dilate(labels, parallel=2)
# processes every voxel
morphed = fastmorph.dilate(labels, background_only=False, parallel=2)

morphed = fastmorph.erode(labels)
morphed = fastmorph.opening(labels, parallel=2)
morphed = fastmorph.closing(labels, parallel=2)

# You can select grayscale dilation, erosion, opening, and 
# closing by passing in a different Mode enum.
# The options are Mode.grey and Mode.multilabel
morphed = fastmorph.dilate(labels, mode=fastmorph.Mode.grey)
morphed = fastmorph.erode(labels, mode=fastmorph.Mode.grey)

# Dilate only supports binary images at this time.
# Radius is specified in physical units, but
# by default anisotropy = (1,1,1) so it is the 
# same as voxels.
morphed = fastmorph.spherical_dilate(labels, radius=1, parallel=2, anisotropy=(1,1,1))

# open and close require dialate to work and so are binary only for now
morphed = fastmorph.spherical_open(labels, radius=1, parallel=2, anisotropy=(1,1,1))
morphed = fastmorph.spherical_close(labels, radius=1, parallel=2, anisotropy=(1,1,1))

# The rest support multilabel images.
morphed = fastmorph.spherical_erode(labels, radius=1, parallel=2, anisotropy=(1,1,1))

# Note: for boolean images, this function will directly call fill_voids
# and return a scalar for ct 
# For integer images, more processing will be done to deal with multiple labels.
# A dict of { label: num_voxels_filled } for integer images will be returned.
# Note that for multilabel images, by default, if a label is totally enclosed by another,
# a FillError will be raised. If remove_enclosed is True, the label will be overwritten.
filled_labels, ct = fastmorph.fill_holes(labels, return_fill_count=True, remove_enclosed=False)

Performance

A test run on an M1 Macbook Pro on connectomics.npy.ckl, a 5123 volume with over 2000 dense labels had the following results for multilabel processing.

erode / 1 thread: 1.553 sec
erode / 2 threads: 0.885 sec
erode / 4 threads: 0.651 sec
dilate / background_only=True / 1 thread: 1.100 sec
dilate / background_only=True / 2 threads: 0.632 sec
dilate / background_only=True / 4 threads: 0.441 sec
dilate / background_only=False / 1 thread: 11.783 sec
dilate / background_only=False / 2 threads: 5.944 sec
dilate / background_only=False / 4 threads: 4.291 sec
dilate / background_only=False / 8 threads: 3.298 sec
scipy grey_dilation / 1 thread 14.648 sec
scipy grey_erode / 1 thread: 14.412 sec
skimage expand_labels / 1 thread: 62.248 sec

Test run on an M1 Macbook Pro with ws.npy.ckl a 5123 volume with tens of thousands of components for multilabel processing.

erode / 1 thread: 2.380 sec
erode / 2 threads: 1.479 sec
erode / 4 threads: 1.164 sec
dilate / background_only=True / 1 thread: 1.598 sec
dilate / background_only=True / 2 threads: 1.011 sec
dilate / background_only=True / 4 threads: 0.805 sec
dilate / background_only=False / 1 thread: 25.182 sec
dilate / background_only=False / 2 threads: 13.513 sec
dilate / background_only=False / 4 threads: 8.749 sec
dilate / background_only=False / 8 threads: 6.640 sec
scipy grey_dilation / 1 thread 21.109 sec
scipy grey_erode / 1 thread: 20.305 sec
skimage expand_labels / 1 thread: 63.247 sec

Here is the performance on a completely zeroed 5123 volume for multilabel processing.

erode / 1 thread: 0.462 sec
erode / 2 threads: 0.289 sec
erode / 4 threads: 0.229 sec
dilate / background_only=True / 1 thread: 2.337 sec
dilate / background_only=True / 2 threads: 1.344 sec
dilate / background_only=True / 4 threads: 1.021 sec
dilate / background_only=False / 1 thread: 2.267 sec
dilate / background_only=False / 2 threads: 1.251 sec
dilate / background_only=False / 4 threads: 0.944 sec
dilate / background_only=False / 8 threads: 0.718 sec
scipy grey_dilation / 1 thread 13.516 sec
scipy grey_erode / 1 thread: 13.326 sec
skimage expand_labels / 1 thread: 35.243 sec

Memory Profiles

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastmorph-1.2.0.tar.gz (26.4 kB view details)

Uploaded Source

Built Distributions

fastmorph-1.2.0-cp312-cp312-win_amd64.whl (137.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastmorph-1.2.0-cp312-cp312-win32.whl (162.8 kB view details)

Uploaded CPython 3.12 Windows x86

fastmorph-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (211.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastmorph-1.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (202.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

fastmorph-1.2.0-cp312-cp312-macosx_11_0_arm64.whl (167.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastmorph-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl (203.3 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fastmorph-1.2.0-cp311-cp311-win_amd64.whl (137.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastmorph-1.2.0-cp311-cp311-win32.whl (161.9 kB view details)

Uploaded CPython 3.11 Windows x86

fastmorph-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (211.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastmorph-1.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (256.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

fastmorph-1.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (202.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

fastmorph-1.2.0-cp311-cp311-macosx_11_0_arm64.whl (168.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastmorph-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl (204.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastmorph-1.2.0-cp310-cp310-win_amd64.whl (136.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastmorph-1.2.0-cp310-cp310-win32.whl (160.9 kB view details)

Uploaded CPython 3.10 Windows x86

fastmorph-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (211.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastmorph-1.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (253.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

fastmorph-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (202.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

fastmorph-1.2.0-cp310-cp310-macosx_11_0_arm64.whl (167.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastmorph-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl (203.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastmorph-1.2.0-cp39-cp39-win_amd64.whl (136.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastmorph-1.2.0-cp39-cp39-win32.whl (161.1 kB view details)

Uploaded CPython 3.9 Windows x86

fastmorph-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastmorph-1.2.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (254.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

fastmorph-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (202.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

fastmorph-1.2.0-cp39-cp39-macosx_11_0_arm64.whl (167.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastmorph-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl (203.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fastmorph-1.2.0-cp38-cp38-win_amd64.whl (136.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastmorph-1.2.0-cp38-cp38-win32.whl (161.0 kB view details)

Uploaded CPython 3.8 Windows x86

fastmorph-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (211.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fastmorph-1.2.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (253.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

fastmorph-1.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (202.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

fastmorph-1.2.0-cp38-cp38-macosx_11_0_arm64.whl (167.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fastmorph-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl (203.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file fastmorph-1.2.0.tar.gz.

File metadata

  • Download URL: fastmorph-1.2.0.tar.gz
  • Upload date:
  • Size: 26.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.3

File hashes

Hashes for fastmorph-1.2.0.tar.gz
Algorithm Hash digest
SHA256 09e1bd3a8cd49bb5853c9d0e8bd3bf68301bf9dadab7f488f9efc1cf63d8e783
MD5 7d235dc7bb64bc63ddb2d47d15c6636f
BLAKE2b-256 165daeb14920da3bb5e5bfc38a43c136d7c60a70d6c42c77a35a51f6e6623f7e

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 978d4388c9685721bc3e95c012d81f9376506a61b7810958d2a592e38122b838
MD5 f604e47e6d04af34b1c8e77051d7013f
BLAKE2b-256 0902b40c3f84e225c506ec064be4f4549c5899fc23292ff3c29fb1712cf8e515

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: fastmorph-1.2.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 162.8 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.3

File hashes

Hashes for fastmorph-1.2.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 8b8f98d3e8e10d86485b948da9aa3c7d963582ab059fc7009c7ffb73edceb223
MD5 5adf042256f62352b99cc576068cf8a9
BLAKE2b-256 6ee2e76e50c2baf39a599ef6e931dbbff6d9502c71b4f5e27b2652d64b3cdef5

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5df749c186dddc0e76dd8456d471bfafa1b3f81caaba33292e78a26601230e45
MD5 c39c0a8bd45a33fd63ea019a4cd90c87
BLAKE2b-256 4e451c502108bbeb7616521df86de57b004b3774a0921433ce0ba1f2945827bc

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f7527517a2ae22f70d8a3ef8f6593338d6b879e4b7d4a898b6bc0e95dbf66972
MD5 d17d44a951d451bb699eb6ae348ab353
BLAKE2b-256 12cdb483590d836d28e91c2fd1faa47e39044f6efeee0b9f72d552243ca0104f

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5219a1162c19738457130bba99299715d2bb4dc05200964b1586515af78314e0
MD5 c8d942079b11af914f0d36fdaa24db44
BLAKE2b-256 62f552f0ee7ee349acd4de88db6b77b677cc56123b06761318714e2ea6a581ce

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f2c572a7982b577f53b30871aa04107f9f77036903da8ed8cbfb782eab661c4c
MD5 2abf00a478a84cb4268abf23fd2aedf4
BLAKE2b-256 973c292f0617e862c1a48376dc1395d7e6cf8d289a19930f45d50efe9177d09c

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 705006f225409849ff99620689de641049622e265d963551ce3ce2b3dd37eaa5
MD5 1a6519ed35d1228947221c54d414e1ec
BLAKE2b-256 75c34b186bfabcddd2380e5557679c5c7cf6693a7d5ff47820613e567a61f090

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: fastmorph-1.2.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 161.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.3

File hashes

Hashes for fastmorph-1.2.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 06b630c0c3923decacec8139396da3c95caf5d8b0d52e1d2c35f36d0b1997368
MD5 cb5a39924da717fdde5503fe889bd857
BLAKE2b-256 3cd9a70dafcdf5834bba819c2260824f106dd06d9c2b048e0c996218b148bfc6

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 74c30430338ed4701d9a1074d5200cc35efb18b29da10318a2e5a82aef5d9e3e
MD5 d14ef4c0b4e94ecd77e4cb96f4038ada
BLAKE2b-256 237c7c1ba311ca779405b42c4b9fc8069e47367f87740135f6a52bea8c98ddf1

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 be30c89ebafe0a3a2997d6e544eb4718e109851cec1dc688098d1b6b02365f82
MD5 27dcb0768e71f12362b2503efa12d82c
BLAKE2b-256 7d07d2db53480e7cd6ee3c277e39828317a86b144b17064e83e68baeebbe03ef

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7020a1570044df6e7f4a6704be7d83375af11576d447b2b56d6e5ed95b8ecaec
MD5 a9a0ca3ae06f8e75ae4173f3f1b9bbea
BLAKE2b-256 e259dd6a8f3e1181bd249e412c8da4aeaa12c442403f98867369164c1b9b81e3

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 24d995036222ab9c96d6f3b14505ee6e6b53a0d5cfd91e00f2c9b5b76a7608b9
MD5 88b531efc9e46b299a8919b69b5aee83
BLAKE2b-256 49d5a5153f0b504dd7978158b4e2a144b0f60b6ed7654040471fc071dac9e653

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 816d157f8b753831ceccc5b7bced0f7c03d0732c1d7496270c0080b1bcaa92ab
MD5 9098ced9c2b5bc9029c75ba81484660a
BLAKE2b-256 181b514f855f9475dc79a2b170effeee318a98c95f47121abe4489cef636acbb

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c784b2b67721e6d9a3085abc302a4ad407f56b5c8e3aa46920013965324dd1d1
MD5 aeec0a919c31ff970d39ab7fc7713f67
BLAKE2b-256 35cd7fdb099f90bf08643081842718f639db89122b60c4824b9ac579357569e6

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: fastmorph-1.2.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 160.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.3

File hashes

Hashes for fastmorph-1.2.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 0ec83be35bae829215868e7296a9d0f3da8e37e2944c3b5ccc514e39aaa1d612
MD5 ed678016039946865a4912dea8beb3c2
BLAKE2b-256 b7bfc3b7e4a16980c46d4f7f0c9e776e7e021b47b5aa8decdd154d6e19163d8b

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c615bad017cfd1675a71b0763c189adec599574842fbe500360c9ce16243853f
MD5 d1ebc5ebd38d9aff8e72723c2d120839
BLAKE2b-256 2c9ecf5484cc0289289196301b6bfd62d2987738d4f6d9e10d01efe3be25cf27

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9b7ea5afeb104a6a7bb933a0d9eedec4b3a5d4f6e7beaa729377029af35b6a11
MD5 e70b2f4d7bf6836a31a82d85a4f4f010
BLAKE2b-256 63d0e65bac7bfe58bb48c77401833a2095e03c9460cbc8387fd631c6733fc7ca

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e4b5da55a2f9f76a1e87e31c38d2f9638f70c019e8e3efc0c8dfcdbaa6fa9332
MD5 3d9a1f2e78f3a040da427e32351c1bd2
BLAKE2b-256 11e274dbcfad4896946b1efc2d36402ba304f2cf15e065c79cd607e4a2bb9a4a

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 595eaab5b162700a98078bca837133c12f8d90002f76015c83b94863eb37eee3
MD5 dc37eccb28a80886085cacc24c89efe0
BLAKE2b-256 62f0f68ee4c97b8ae1c6e5d3afe17387bbbe72d295ff3d76124185495708d177

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5c230ea71776daf2c16fae70bbc47660883b37ab3464e310019ec09fa488d49b
MD5 2368fcb7cf020f5f5146f01df81613c5
BLAKE2b-256 78dce69190b091eb47c1102a4ce8919a1c1457b88c2a2487275abf5051222862

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastmorph-1.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 136.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.3

File hashes

Hashes for fastmorph-1.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7b19539ee2b4976d71c74cfbb66b92b7d2f1c41819d0760e777506c730824d06
MD5 2ef369a53f2d6f2d71f9becc5447bf30
BLAKE2b-256 62c1346820c525f860e669629236d7553740f4164b52db49468e9b779ec17f04

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: fastmorph-1.2.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 161.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.3

File hashes

Hashes for fastmorph-1.2.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 96701a503897fbd42eb4ece0a71ce62e65a63282679409855ddaddf1cc21b4ec
MD5 04947a5f939ef8dff9d35292c1ed7348
BLAKE2b-256 2911d33e8b9b6af1dd66349e438c5954823211c3efe464747814bd2079cf9afd

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ebf693a8afd4f557d1370fe20eefe6c19adfce101b4298f10eceba4977bb545
MD5 a373837a9f5a690397811f550e494750
BLAKE2b-256 c8438b17eb7e2fdce2ed4605f190a092905c3756a30da6c5eac385ff0dd1b703

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 71027c4dd4f8e7063b678bda1b4fe6e31c1fba5b722de70987c5aee2080c2882
MD5 f72d1aa348661818bdf7854a0ea4e8ea
BLAKE2b-256 c9b0aaf4c7752bf6cc6220d7e91f4fa556d1ac1f8c7d39a1913912c72d7466a5

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 302a31da9f9d6a8623c001f0ab354c7a33c5f2d1281206aa3de85e003e75fa6a
MD5 fad6a01d48d348da26b877c64a560aca
BLAKE2b-256 b0597498a8fc95018793eab8d2dc3bb64d100316d32edf3dd44c832b5da329f1

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 48067b89c5ccc6647697edf90f0616e697255fbc20c46a8f2068afddc724aae2
MD5 0ba78ba685ab09e49d16f14ba7e22dbc
BLAKE2b-256 3c6c0fe674843ab580c95298c74215e3216158a8245e9bca96e7b04d952503ab

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c6697fcd52bda71555de20c7aece3caad07d36a81fb740317cc839369d650d7
MD5 03a11981b0e078b4da1d26b40e597b1f
BLAKE2b-256 57a098d91bb5760f1719fabc2876eda90a06779e4ffcca63c4ca0aa9ef4773fd

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fastmorph-1.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 136.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.3

File hashes

Hashes for fastmorph-1.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 85ddda5bc30bdc28f567768c7a5282d5e9a8e41d1a096239e9afbb3a0731495d
MD5 55c8c207af4f30cf1867104a7a8083ec
BLAKE2b-256 356e744f8f86a5e0f6cd2620c8e208f9dd713a8db41c32e30087909779b4d56d

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: fastmorph-1.2.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 161.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.3

File hashes

Hashes for fastmorph-1.2.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 dd4b25f61c103a51138d63dc199c27396b9b829c383a8552c41434e302475d73
MD5 369f0cc1a88564d3e031afed888c3e6d
BLAKE2b-256 79d753be6dfa290b5315a58a54f3914639867c8249ed124feaf62e6c602b511b

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b0940b915b21d4ae7d4de368d0b2571cf1b09b3b54bed10a887a1e567fa6bea
MD5 b64b3559f48ecaad26d39d7fee784863
BLAKE2b-256 c31aa6b1d3e7cbba2e5c90f839db00287bde6bc3f2c4d0bbd42f8ff3f7da4287

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 31d32b1efc56859d54af74935ff5ef3cea953c4f1bd8608359532c0743c84a75
MD5 e8fdad10bd9213a0760e21516ab152b7
BLAKE2b-256 127b2d75d428e2020ce39139abad984cb47016f1fb232dd591e905ec33efd3a6

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e29f273e246eaeff7d8f884d68e553a3c02072c6b5627643c1d2ebf602fba490
MD5 da859099e680e30a5ffd775ca01c6d3c
BLAKE2b-256 c2a9c8d4ff31bf6fe91b28b82fc2ffeac5bf0004734e7925114435f4a38e72fe

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a84f52d9947929cabc0a89951f0282676dce8e9138a4d9d90aff3d5a04f8065f
MD5 e8e248dcdcc126f6cb6bb07ac1d1203c
BLAKE2b-256 333703574bb6dcd11c8f0549b27303b90e6ad780825741909495f303ebd6ad29

See more details on using hashes here.

File details

Details for the file fastmorph-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastmorph-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b942ab3c12ce062e643245ec4b52121892ff6af6cd53f20d53ea9bbaf08bc36d
MD5 6b29cceb185af0c2faf8347f961e92e8
BLAKE2b-256 e595fe6928c3dc47aa5aecd393f2d266739e0bf944f0c3b5d27ebfbcf188bef0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page