Skip to main content

Super-fast and clean conversions to numbers.

Project description

https://img.shields.io/pypi/v/fastnumbers.svg https://img.shields.io/pypi/pyversions/fastnumbers.svg https://img.shields.io/pypi/l/fastnumbers.svg https://github.com/SethMMorton/fastnumbers/workflows/Tests/badge.svg https://codecov.io/gh/SethMMorton/fastnumbers/branch/main/graph/badge.svg https://img.shields.io/pypi/dw/fastnumbers.svg

Super-fast and clean conversions to numbers.

fastnumbers is a module with the following three objectives (in order of decreasing importance as to why the module was created):

  1. Provide a set of convenience functions that wrap calls to int and float and provides easy, concise, powerful, fast and flexible error handling.

  2. Provide a set of functions that can be used to rapidly identify if an input could be converted to int or float.

  3. Provide drop-in replacements for the Python built-in int and float that are on par or faster with the Python equivalents (see the Timing section for details). These functions should behave identically to the Python built-ins except for a few specific corner-cases as mentioned in the API documentation for those functions.

    • PLEASE read the quick start for these functions to fully understand the caveats before using them.

What kind of speedups can you expect? Here are some highlights, but please see the Timing section for the raw data if you want details.

  • Up to 2x faster conversion of strings to integers than the built-in int() function

  • Up to 5x faster conversion of strings to floats than the built-in float() function (possibly greater for very long strings)

  • Up to 10x faster handling of errors during conversion than using user-side error handling

  • On top of the above, operations to convert a list of strings (with the map option or try_array function) is 2x faster than the equivalent list comprehension.

NOTICE: As of fastnumbers version 4.0.0, only Python >= 3.7 is supported.

NOTICE: As of fastnumbers version 4.0.0, the functions fast_real, fast_float, fast_int, fast_forceint, isreal, isfloat, isint, and isintlike have been deprecated and are replaced with try_real, try_float, try_int, try_forceint, check_real, check_float, check_int, and check_intlike, respectively. These new functions have more flexible APIs and have names that better reflect the intent of the functions. The old functions can still be used (they will never be removed from fastnumbers), but the new ones should be preferred for new development.

NOTICE: As of fastnumbers version 4.0.0, query_type now sets allow_underscores to False by default instead of True.

Quick Start

There are three broad categories of functions exposed by fastnumbers. The below quick start will demonstrate each of these categories. The quick start is “by example”, and will show a sample interactive session using the fastnumbers API.

Error-Handling Functions

try_float will be used to demonstrate the functionality of the try_* functions.

>>> from fastnumbers import RAISE, try_float
>>> # Convert string to a float
>>> try_float('56.07')
56.07
>>> # Integers are converted to floats
>>> try_float(54)
54.0
>>>
>>> # Unconvertable string returned as-is by default
>>> try_float('bad input')
'bad input'
>>> # Unconvertable strings can trigger a default value
>>> try_float('bad input', on_fail=0)
0
>>>
>>> # One can ask inf or nan to be substituted with another value
>>> try_float('nan')
nan
>>> try_float('nan', nan=0.0)
0.0
>>> try_float(float('nan'), nan=0.0)
0.0
>>> try_float('56.07', nan=0.0)
56.07
>>>
>>> # The default built-in float behavior can be triggered with
>>> # RAISE given to "on_fail".
>>> try_float('bad input', on_fail=RAISE) #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): bad input
>>>
>>> # A function can be used to return an alternate value for invalid input
>>> try_float('bad input', on_fail=len)
9
>>> try_float(54, on_fail=len)
54.0
>>>
>>> # Single unicode characters can be converted.
>>> try_float('\u2164')  # Roman numeral 5 (V)
5.0
>>> try_float('\u2466')  # 7 enclosed in a circle
7.0

try_int behaves the same as try_float, but for integers.

>>> from fastnumbers import try_int
>>> try_int('1234')
1234
>>> try_int('\u2466')
7

try_real is like try_float or try_int depending on if there is any fractional component of thi return value.

>>> from fastnumbers import try_real
>>> try_real('56')
56
>>> try_real('56.0')
56
>>> try_real('56.0', coerce=False)
56.0
>>> try_real('56.07')
56.07
>>> try_real(56.07)
56.07
>>> try_real(56.0)
56
>>> try_real(56.0, coerce=False)
56.0

try_forceint always returns an integer.

>>> from fastnumbers import try_forceint
>>> try_forceint('56')
56
>>> try_forceint('56.0')
56
>>> try_forceint('56.07')
56
>>> try_forceint(56.07)
56

Fast operations on lists and other iterables

Each of the try_* functions have a map option causes the function to accept an iterable of items to convert and returns a list. Using try_float as an example, the following are all functionally equivalent.

>>> from fastnumbers import try_float
>>> iterable = ["5", "4.5", "34567.6", "32"]
>>> try_float(iterable, map=list) == list(map(try_float, iterable))
True
>>> try_float(iterable, map=list) == [try_float(x) for x in iterable]
True
>>> try_float(iterable, map=list) == list(try_float(iterable, map=True))
True

The difference is that the map option is 2x the speed of the list comprehension method, and 1.5x the speed of the map method. The reason is that it avoids Python function call overhead on each iteration. Note that True causes the function to return an iterator, and list causes it to return a list. In practice the performance of these are similar (see Timing for raw data).

If you need to store your output in a numpy array, you can use try_array to do this conversion directly. This function has some additional handling for overflow that is not present in the other fastnumbers functions that may come in handy when dealing with numpy arrays.

>>> from fastnumbers import try_array
>>> import numpy as np
>>> iterable = ["5", "4.5", "34567.6", "32"]
>>> np.array_equal(np.array(try_float(iterable, map=list), dtype=np.float64), try_array(iterable))
True

You will see about a 2x speedup of doing this in one step over converting to a list then converting that list to an array.

About the on_fail option

The on_fail option is a way for you to do anything in the event that the given input cannot be converted to a number. It can

  • return given object as-is if set to fastnumbers.INPUT (this is the default)

  • raise a ValueError if set to fastnumbers.RAISE

  • return a default value if given any non-callable object

  • call a function with the given object if given a single-argument callable

Below are a couple of ideas to get you thinking.

NOTE:: There is also an on_type_error option that behaves the same as on_fail except that a) it is triggered when the given object is of an invalid type and b) the default value is fastnumbers.RAISE, not fastnumbers.INPUT.

>>> from fastnumbers import INPUT, RAISE, try_float
>>> # You want to convert strings that can be converted to numbers, but
>>> # leave the rest as strings. Use fastnumbers.INPUT (the default)
>>> try_float('45.6')
45.6
>>> try_float('invalid input')
'invalid input'
>>> try_float('invalid input', on_fail=INPUT)
'invalid input'
>>>
>>>
>>>
>>> # You want to convert any invalid string to NaN
>>> try_float('45.6', on_fail=float('nan'))
45.6
>>> try_float('invalid input', on_fail=float('nan'))
nan
>>>
>>>
>>>
>>> # Simple callable case, send the input through some function to generate a number.
>>> try_float('invalid input', on_fail=lambda x: float(x.count('i')))  # count the 'i's
3.0
>>>
>>>
>>>
>>> # Suppose we know that our input could either be a number, or if not
>>> # then we know we just have to strip off parens to get to the number
>>> # e.g. the input could be '45' or '(45)'. Also, suppose that if it
>>> # still cannot be converted to a number we want to raise an exception.
>>> def strip_parens_and_try_again(x):
...     return try_float(x.strip('()'), on_fail=RAISE)
...
>>> try_float('45', on_fail=strip_parens_and_try_again)
45.0
>>> try_float('(45)', on_fail=strip_parens_and_try_again)
45.0
>>> try_float('invalid input', on_fail=strip_parens_and_try_again) #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): invalid input
>>>
>>>
>>>
>>> # Suppose that whenever an invalid input is given, it needs to be
>>> # logged and then a default value is returned.
>>> def log_and_default(x, log_method=print, default=0.0):
...     log_method("The input {!r} is not valid!".format(x))
...     return default
...
>>> try_float('45', on_fail=log_and_default)
45.0
>>> try_float('invalid input', on_fail=log_and_default)
The input 'invalid input' is not valid!
0.0
>>> try_float('invalid input', on_fail=lambda x: log_and_default(x, default=float('nan')))
The input 'invalid input' is not valid!
nan

About the denoise option

The denoise option is available on the try_real and try_forceint options. To best understand its usage, consider the following native Python behavior:

>>> int(3.453e21)
3452999999999999737856
>>> int(float("3.453e21"))
3452999999999999737856
>>> # Most users would likely expect this result from decimal.Decimal
>>> import decimal
>>> int(decimal.Decimal("3.453e21"))
3453000000000000000000
>>> # But watch out, even decimal.Decimal doesn't help for float input
>>> import decimal
>>> int(decimal.Decimal(3.453e21))
3452999999999999737856

Because the conversion of a float to an int goes through the C double data type which has inherent limitations on accuracy (See this Stack Overflow question for examples) the resulting int result has “noise” digits that are not part of the original float representation.

For functions where this makes sense, fastnumbers provides the denoise option to give you the results that decimal.Decimal would give for strings containing floats.

>>> from fastnumbers import try_real
>>> try_real(3.453e21)
3452999999999999737856
>>> try_real("3.453e21")
3452999999999999737856
>>> try_real(3.453e21, denoise=True)
3453000000000000000000
>>> try_real("3.453e21", denoise=True)
3453000000000000000000

Two things to keep in mind:

  1. The denoise option adds additional overhead to the conversion calculation, so please consider the trade-offs between speed and accuracy when determining whether or not to use it. It is significantly faster than using decimal.Decimal, but much slower than not using it at all.

  2. For string input, denoise will return results identical to decimal.Decimal. For float input, denoise will return results that are accurate to about 15 digits (C double can only store 16 decimal digits, so this means that only the last possible digit may not be accurate).

Checking Functions

check_float will be used to demonstrate the functionality of the check_* functions. There is also the query_type function.

>>> from fastnumbers import check_float
>>> from fastnumbers import ALLOWED, DISALLOWED, NUMBER_ONLY, STRING_ONLY
>>> # Check that a string can be converted to a float
>>> check_float('56')
True
>>> check_float('56', strict=True)
False
>>> check_float('56.07')
True
>>> check_float('56.07 lb')
False
>>>
>>> # Check if a given number is a float
>>> check_float(56.07)
True
>>> check_float(56)
False
>>>
>>> # Specify if only strings or only numbers are allowed
>>> check_float(56.07, consider=STRING_ONLY)
False
>>> check_float('56.07', consider=NUMBER_ONLY)
False
>>>
>>> # Customize handling for nan or inf (see API for more details)
>>> check_float('nan')
False
>>> check_float('nan', nan=ALLOWED)
True
>>> check_float(float('nan'))
True
>>> check_float(float('nan'), nan=DISALLOWED)
False

check_int works the same as check_float, but for integers.

>>> from fastnumbers import check_int
>>> check_int('56')
True
>>> check_int(56)
True
>>> check_int('56.0')
False
>>> check_int(56.0)
False

check_real is very permissive - any float or integer is accepted.

>>> from fastnumbers import check_real
>>> check_real('56.0')
True
>>> check_real('56')
True
>>> check_real(56.0)
True
>>> check_real(56)
True

check_intlike checks if a number is “int-like”, if it has no fractional component.

>>> from fastnumbers import check_intlike
>>> check_intlike('56.0')
True
>>> check_intlike('56.7')
False
>>> check_intlike(56.0)
True
>>> check_intlike(56.7)
False

The query_type function can be used if you need to determine if a value is one of many types, rather than whether or not it is one specific type.

>>> from fastnumbers import query_type
>>> query_type('56.0')
<class 'float'>
>>> query_type('56')
<class 'int'>
>>> query_type(56.0)
<class 'float'>
>>> query_type(56)
<class 'int'>
>>> query_type(56.0, coerce=True)
<class 'int'>
>>> query_type('56.0', allowed_types=(float, int))
<class 'float'>
>>> query_type('hey')
<class 'str'>
>>> query_type('hey', allowed_types=(float, int))  # returns None

Drop-in Replacement Functions

PLEASE do not take it for granted that these functions will provide you with a speedup - they may not. Every platform, compiler, and data-set is different, and you should perform a timing test on your system with your data to evaluate if you will see a benefit. As you can see from the data linked in the Timing section, the amount of speedup you will get is particularly data-dependent. In general you will see a performance boost for floats (and this boost increases as the size of the float increases), but for integers it is largely dependent on the length of the integer. You will likely not see a performance boost if the input are already numbers instead of strings.

NOTE: in the below examples, we use from fastnumbers import int instead of import fastnumbers. This is because calling fastnumbers.int() is a bit slower than just int() because Python has to first find fastnumbers in your namespace, then find int in the fastnumbers namespace, instead of just finding int in your namespace - this will slow down the function call and defeat the purpose of using fastnumbers. If you do not want to actually shadow the built-in int function, you can do from fastnumbers import int as fn_int or something like that.

>>> # Use is identical to the built-in functions
>>> from fastnumbers import float, int
>>> float('10')
10.0
>>> int('10')
10
>>> float('bad input') #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): bad input

real is provided to give a float or int depending on the fractional component of the input.

>>> from fastnumbers import real
>>> real('56.0')
56
>>> real('56.7')
56.7
>>> real('56.0', coerce=False)
56.0

Timing

Just how much faster is fastnumbers than a pure python implementation? Please look https://github.com/SethMMorton/fastnumbers/tree/main/profiling.

High-Level Algorithm

For integers, CPython goes to great lengths to ensure that your string input is converted to a number correctly and losslessly (you can prove this to yourself by examining the source code for integer conversions). This extra effort is only needed for integers that cannot fit into a 64-bit integer data type - for those that can, a naive algorithm of < 10 lines of C code is sufficient and significantly faster. fastnumbers uses a heuristic to determine if the input can be safely converted with the much faster naive algorithm, and if so it does so, falling back on the CPython implementation for longer input strings. Most real-world numbers pass the heuristic and so you should generally see improved performance with fastnumbers for integers.

For floats, fastnumbers utilizes the ultra-fast fast_float::from_chars function to convert strings representing floats into a C double both quickly and safely - the conversion provides the same accuracy as the CPython float conversion function but instead of scaling linearly with length of the input string it seems to have roughly constant performance. By completely bypassing the CPython converter we get significant performance gains with no penalty, so you should always see improved performance with fastnumbers for floats.

Installation

Use pip!

$ pip install fastnumbers

How to Run Tests

Please note that fastnumbers is NOT set-up to support python setup.py test.

The recommended way to run tests is with tox. Suppose you want to run tests for Python 3.8 - you can run tests by simply executing the following:

$ tox run -e py38

tox will create virtual a virtual environment for your tests and install all the needed testing requirements for you.

If you want to run testing on all supported Python versions you can simply execute

$ tox run

You can change the how much “random” input your tests will try with

# Run fewer tests with "random" input - much faster
$ tox run -- --hypothesis-profile fast

# Run more tests with "random" input - takes much longer but is more thorough
$ tox run -- --hypothesis-profile thorough

If you want to run the performce analysis yourself, you can execute

# This assumes Python 3.9 - adjust for the version you want to profile
$ tox run -e py39-prof

If you do not wish to use tox, you can install the testing dependencies with the dev-requirements.txt file and then run the tests manually using pytest.

$ pip install -r dev/requirements.txt
$ pytest

Author

Seth M. Morton

History

Please visit the changelog on GitHub.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastnumbers-5.1.0.tar.gz (191.4 kB view details)

Uploaded Source

Built Distributions

fastnumbers-5.1.0-cp312-cp312-win_amd64.whl (103.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastnumbers-5.1.0-cp312-cp312-win32.whl (93.3 kB view details)

Uploaded CPython 3.12 Windows x86

fastnumbers-5.1.0-cp312-cp312-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

fastnumbers-5.1.0-cp312-cp312-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

fastnumbers-5.1.0-cp312-cp312-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

fastnumbers-5.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastnumbers-5.1.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

fastnumbers-5.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

fastnumbers-5.1.0-cp312-cp312-macosx_11_0_arm64.whl (155.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastnumbers-5.1.0-cp312-cp312-macosx_10_9_x86_64.whl (153.7 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fastnumbers-5.1.0-cp312-cp312-macosx_10_9_universal2.whl (297.0 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-5.1.0-cp311-cp311-win_amd64.whl (103.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastnumbers-5.1.0-cp311-cp311-win32.whl (93.8 kB view details)

Uploaded CPython 3.11 Windows x86

fastnumbers-5.1.0-cp311-cp311-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

fastnumbers-5.1.0-cp311-cp311-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

fastnumbers-5.1.0-cp311-cp311-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

fastnumbers-5.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastnumbers-5.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

fastnumbers-5.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

fastnumbers-5.1.0-cp311-cp311-macosx_11_0_arm64.whl (155.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastnumbers-5.1.0-cp311-cp311-macosx_10_9_x86_64.whl (153.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastnumbers-5.1.0-cp311-cp311-macosx_10_9_universal2.whl (297.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-5.1.0-cp310-cp310-win_amd64.whl (103.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastnumbers-5.1.0-cp310-cp310-win32.whl (93.7 kB view details)

Uploaded CPython 3.10 Windows x86

fastnumbers-5.1.0-cp310-cp310-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

fastnumbers-5.1.0-cp310-cp310-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

fastnumbers-5.1.0-cp310-cp310-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

fastnumbers-5.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastnumbers-5.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

fastnumbers-5.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

fastnumbers-5.1.0-cp310-cp310-macosx_11_0_arm64.whl (156.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastnumbers-5.1.0-cp310-cp310-macosx_10_9_x86_64.whl (153.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastnumbers-5.1.0-cp310-cp310-macosx_10_9_universal2.whl (298.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-5.1.0-cp39-cp39-win_amd64.whl (103.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastnumbers-5.1.0-cp39-cp39-win32.whl (93.8 kB view details)

Uploaded CPython 3.9 Windows x86

fastnumbers-5.1.0-cp39-cp39-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

fastnumbers-5.1.0-cp39-cp39-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

fastnumbers-5.1.0-cp39-cp39-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

fastnumbers-5.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastnumbers-5.1.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

fastnumbers-5.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

fastnumbers-5.1.0-cp39-cp39-macosx_11_0_arm64.whl (156.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastnumbers-5.1.0-cp39-cp39-macosx_10_9_x86_64.whl (153.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fastnumbers-5.1.0-cp39-cp39-macosx_10_9_universal2.whl (298.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-5.1.0-cp38-cp38-win_amd64.whl (103.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastnumbers-5.1.0-cp38-cp38-win32.whl (93.8 kB view details)

Uploaded CPython 3.8 Windows x86

fastnumbers-5.1.0-cp38-cp38-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

fastnumbers-5.1.0-cp38-cp38-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

fastnumbers-5.1.0-cp38-cp38-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

fastnumbers-5.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fastnumbers-5.1.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

fastnumbers-5.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

fastnumbers-5.1.0-cp38-cp38-macosx_11_0_arm64.whl (156.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fastnumbers-5.1.0-cp38-cp38-macosx_10_9_x86_64.whl (153.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

fastnumbers-5.1.0-cp38-cp38-macosx_10_9_universal2.whl (298.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-5.1.0-cp37-cp37m-win_amd64.whl (103.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

fastnumbers-5.1.0-cp37-cp37m-win32.whl (92.9 kB view details)

Uploaded CPython 3.7m Windows x86

fastnumbers-5.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

fastnumbers-5.1.0-cp37-cp37m-musllinux_1_1_i686.whl (2.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

fastnumbers-5.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

fastnumbers-5.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fastnumbers-5.1.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

fastnumbers-5.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

fastnumbers-5.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (152.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file fastnumbers-5.1.0.tar.gz.

File metadata

  • Download URL: fastnumbers-5.1.0.tar.gz
  • Upload date:
  • Size: 191.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fastnumbers-5.1.0.tar.gz
Algorithm Hash digest
SHA256 e092d33f8b95c3171a2fb34e579efe0c54b0290dd7f96ffaa2762437601d90a7
MD5 19c8b7f4e3ae55365dbf451ba89f80aa
BLAKE2b-256 183101a96ea9951192ff86b22a1ed8074980d0156420db1dd0086884a6ca6777

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1839074fccd139aeeae92990e12c922831bb1cce3c32a904a649896d6e847eac
MD5 58cfd97aa49ddc5fd05d81ec2e21b462
BLAKE2b-256 aeb224cea0768d5e0bd31612694bc69c108d23beaf3cac8980000fc8d6c18039

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: fastnumbers-5.1.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 93.3 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fastnumbers-5.1.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 101c66a9f85ecda1f38efc56919810dcc78fb98f67acf6c9ee3ad223b1641dad
MD5 7fdb62e7adefe54cc3fec2de47dc45d4
BLAKE2b-256 ca7dd048748704d1e45b1bf6601bb60e998803e123586c4970ded17f7dfdf738

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4d30e89056a14aa85a7fba0a95771982dfe723d2e3fce1f40be348c8d105a766
MD5 d98bd0dfb37b35f6f42b428d56799f30
BLAKE2b-256 f1a33c5ce50d69cbbd98eab556dd6392eb24fa82b71ffcc0ce76c69792c14107

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b68d7dd7abb37570200d021ef348b9c34801939d2d3eaeb3abaea04b08340598
MD5 ac0083c9a2381e18bc8e95b7f2ccbf0a
BLAKE2b-256 da6ba4de8a3a5939654a0d822ad12066852f4c4150c79fc1c0339147db951737

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 6f9c61b98998f2f35654d7adc162687c82aed8e834dfcfd38c71c492935299c1
MD5 1cab48c830d15b90bd38fe69fdd9c99b
BLAKE2b-256 5c3e3b8cb7fb86ce6ea3cce5c0e114cf63b743180b02380d6e3729554dfa93e1

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 809b989112f1db1118e1a577227dc3db9815f5593c96ee0c57eaff2c2e814a69
MD5 f9f5aba74e51d95e79fb8da312ea7f7e
BLAKE2b-256 3b68d7b693f7fa198fbbe62aa2d2e3c14a86ecc72b4c7e65a62bb3ee1247c63b

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c978010133a1a4d05eee7f1853fb45967e3284de02136bfe748f793c30304b33
MD5 f3b5a05872de8967e26a8edd8369d23e
BLAKE2b-256 236cce9b1db47da62bff8cf5acf9d2c7577787772534436619b3b13901ff6c30

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1d321bbfb8cf03e65dba8cb8f08bc58e2026f7c27418ecb0258a6e66c1a11f26
MD5 850a78a5f45966668b28c696ee7f5da2
BLAKE2b-256 2b5f624ca3283d5b4934e18dfa4fc606e8d1f924b9b58b1b8b90b636136a6ffa

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8560a6a04e8febbf9429ac3a27a46a41ff9c80536c2685a012de60ae80af4953
MD5 27317dc06431652472c86d9d26495ed0
BLAKE2b-256 861a4f9892d0060bea877a57816b9c5f557804d454eb8e277de453eb15ad562c

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bfc95929203c72ccb6777142547d43c0b94a8eb262e9f324b9a351114b684161
MD5 0c21c6ca5da33235f7c6b91e08ee7093
BLAKE2b-256 ef5ee4dac78aa3bc7c3b77c84a6204dbd09b2217bc378671658fcf1856f572ab

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ec87b68374d764c282e6d3c7904c734819e3f4fcc6c81696be10e9ccfecc008b
MD5 a7ddd5cd4ec5f19f2b3aee38e1b61aec
BLAKE2b-256 d01f98449893742bff9473745951231a061689bda5b67ac442ca0ca3417f40a9

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2bde11e6ba82c7a1cd55ff233c728f23a8ae43449eb68bce2b07d5e571ded390
MD5 c69b64922a5c427ce5d372382f8ac848
BLAKE2b-256 163fdfb45d85806e90c1142d9723f91bf9618f656d811f1ae7c4b1699092f0f0

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: fastnumbers-5.1.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 93.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fastnumbers-5.1.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 2d5181909960cdda55511dd98344deabfa0b6f497be11e89b0101d1b67da47e1
MD5 9171527c91681bb554098a9c12f11cc1
BLAKE2b-256 e5fe9e2ac59e998f4b0842adf222fd9fb07a346f4289ca628b658a2bb77ce52f

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4bd1bc206085f3f5a5d0a567de673e81e7db9866da38dc227b134072ac2e001b
MD5 d7b2aecd996f767b07c27d38a0d78669
BLAKE2b-256 15b6777d84744ee6f89489037ac29e9f9273a8115073af000d91943979f74365

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b8c275ad985d0f621c0f2182c3beca469b1d7d934d11086cad855189987dec34
MD5 d8f4b80e77a1d2f92090e87b6c0631d3
BLAKE2b-256 c346c15be9aed6d097299f26f3300fe8566fd9972acc1af39497d0b52225ec3e

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d8d73d7d16b9e79a264d5eba2d05fecf3d952156e381cddc54738649f3203723
MD5 c947ed72681475e109cec8754b1e3a25
BLAKE2b-256 a5a5f5d10136e4abde3dd469fd1f62b805ddb301addfc9dfb74626e786046fa3

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93e4f302db5320cf105b2ba9cfdb428135c7f5ecc6da7ac0bb70f6658b51696a
MD5 07ebb4d0be9b9a57be172aa5c8f3782f
BLAKE2b-256 41fc49d192f34bb1b4d0b97ca08a0ec400ea6087650e869fbac0d96048c46a4f

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 77eac64616affcfb085ac23f180f3e135f084d1a2d6be237e7eadc1a07306817
MD5 22fbd626efb2d3628d181e3e05a20788
BLAKE2b-256 d0099a0710c33b66ae94b860f9d5bf3ef9f1e97cffb4e4b35599afa323239f5c

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 759cb37003e712b5d6ea30221197cf3f493fe08f3b54e3271118111e59b3376b
MD5 2542e29d465e0b50e5a27cbe622ca6ac
BLAKE2b-256 833d084c3cfcb777ce5b45e36aa5cfca6bb88d0b4f722dc2cbba493a8a8abf8f

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 155a112e8dd6838f918916dcd70939a2cff1169ffa95f528305e2f6f681b2cd6
MD5 6a5e2c40baaa6b133bd835f06be6df9c
BLAKE2b-256 34933c1dd6c5395dad602910f97f5f5964134b93c7a2ab24983ffd7e0ee7ee56

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6d96fa5aa9429c227f4090d493d753bfaa93b2244669db25d873728c195c69b1
MD5 df79c69e6869902fe4a738d23b9db4eb
BLAKE2b-256 21e0337be27e806d13c174b74890ec78f4e7a5d41c61e021162ca8ec3fcdad72

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e26836c209d2f4f3042cdfc82a11786e0cdf28e95e87b0d737e29d976b2ea0ea
MD5 c69c60ba3d5e216d5ff2c9f3c2deb069
BLAKE2b-256 8acfc26bf42ef7ddbbe627b5ebcf720f2ecdb78c25f452e363bcca3590f34d43

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3cf55fcf589f89641107ec37ffd4938b839fc19d7f3f0c0e7a5600e59f73eaa8
MD5 489939810c496c9a0d1d12c3aefa106b
BLAKE2b-256 a7ffda988cadc8575153032ce9d000afe5a7da4994301b11a620b3e815182ee8

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: fastnumbers-5.1.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 93.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fastnumbers-5.1.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 bbec36feef2d0d2664aa318982f704c8e43c49c3d089c5bebe28f7c74c0cbee2
MD5 4c8270e6f0ea11a5ad7c1f31012aeeb7
BLAKE2b-256 bad2997b3f0d081110a33d864e9e01a1105dd09f6043c76b1eafcf845a60a36b

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 aa73eae3ba30214344b82f06e52a00181508fef451f78f0b72d7c7b0e451d421
MD5 a49f44a056a3112d12b80a639952702c
BLAKE2b-256 11c7ce3f4434a6bab704c8a28bbc2c8e89238cd1c922b35bb1a18e01d25631db

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e47feec59999d299ae1b66fa5735b86f01d641f710303f4690a97af0c240055e
MD5 cebaad60eaae5af53d2b9031ae632caf
BLAKE2b-256 d5f710d3d1da77c847800e34e1bac004c67d5d3f1928d5802e365811d249368e

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7b0cc5f57429106d034f2eb4777d81a836172da9801cb9d3f9e41b8067167c0c
MD5 36183aa350c0c8a509b0a6ee0b772955
BLAKE2b-256 122d5574f2497bf51b182e2d5fc81929ead8eef61efad2f580ae9235e9046ba6

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7126b56756c341f83a0855f5b7a15a78f083ba94a6ea3320f03ad614a22fcd18
MD5 1e06fc706629b3fcc80df68c36094ca4
BLAKE2b-256 2335ef46479768ec9bc5d1365ca3227529a202c8141a1759876e1853b1a7c349

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2a01cfeb96bdfd6af4e68ec3e5fbf61e8be181e611c262274d45562b985d7d3f
MD5 239f089e413b8f4670f4cddedc92a382
BLAKE2b-256 a279daad563a5a86160dcdc11ba604a49de6f97bca84d8bd20cef35b78e85fa5

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 44c991686e741c09d6202de1f8030e0e478f8724a9c354a923654fa5110b167f
MD5 e6998147a1848ec6765855d851e784e4
BLAKE2b-256 e9d9150181b73d2a1edc02c46f0fa7808db3a0d94a7ba490c8c1f0cf4393c762

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6b3b0208e138e56c03f69d5c43494901590351c57ac37c21165dfce7806dbb41
MD5 b155c4b434d2943f3df37dba412fa0e3
BLAKE2b-256 d56a74a3460714e6db2def37abd2618fa7be28a21de2899cf74d2c2980c15236

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 027bb3ff52d02e06178e522f9af024482f2e2f17852236fc817367e5bfb91012
MD5 b9d45ecc887a844f80729a6d3bc9ad4d
BLAKE2b-256 89d8d49fc58df0e73567a2ff262d646f00143872eaf649ca79596f71b22a68a8

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9c29f40c329d303ce5b123d0ac438a9a167625b808824129111c5502db6e6102
MD5 433d3529b0bf8cd2e267832c0c381a61
BLAKE2b-256 a74929834f33aa433a409a7e4cf96e7d6cbabd7f6fed3f05caa0fa31ea93e394

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 32cb7a9df68daca3d533cf5220ddf0e84dfef806e26ee7c968f1e74663e91b0c
MD5 63d76e395387103e90f6a392c577808e
BLAKE2b-256 dd7bbca36d7dc7df214451f2ffc1d38419a4d652c9bebc6fe0964e8ae93e9da1

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: fastnumbers-5.1.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 93.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fastnumbers-5.1.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7d21e373055f6cdcfa030d1cb280251d21d05af868bef6ada6fa9d952183a1d2
MD5 9fd02e4a205e1423af62c33fc6780102
BLAKE2b-256 20a1c41699248399383ef726883d5f3b488a1766c97dae0ca73296e589f41ef6

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 47fa32228575d5d346d5b8caf5730a173035a880168283b0c5f7bbf9857a9f12
MD5 b94b4f16ee7911b128d7771c09837b17
BLAKE2b-256 8eec4d56aa6e75a6e8c879ed2d5233547ae9c7597d4055f76f7fd43a4cd22e07

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 18b5fef6c7bdf79fa6b34b5b1c1801d8bf484a766e0910eaf092bb8e1e472a52
MD5 4bce01ca5a1fc5892d9bd22c28ac8336
BLAKE2b-256 172273014bdad380ca15580a9c535a818e5973a97411c8eb4dce69bf1d2d8898

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 46e2ad34195d898fc5d6d5698c09294aa76aa9017e0f02b582483b0f0a0f08e8
MD5 942da0aabe7b9e56598ce31ea4709147
BLAKE2b-256 78791481f42210775889180160655a396fbd888f54563ed37e7930c707dae2c4

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce65dded4dc6ba6cacb370591a4d13bc6aa82c72550eea27fe5e102fc3533f99
MD5 87b8f934a8dd44acd9384f4f597e738d
BLAKE2b-256 1970325fdd9dfc16f1606ee2bc3ea84ac2cf3ca925c8e6858a0a5f8d99525d96

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fa0136ffd2317b7f89165c1fa754f3617b3a89b77eb9c42e6b270c3dde01b5ec
MD5 d726abd659f17c23aef2c9b6c291bf3f
BLAKE2b-256 8056a386c67fbf2ac42167cbac1f35a89fe22e1a17b07af0bd159465e3aa2358

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 82548b8b897ecd23b4409633389549984fcd7225d96dfd9d5ee5706dcaf4e72a
MD5 dbdfc27dcac8932e73fa995d20f8462d
BLAKE2b-256 eeffae52086d12b35a8324d85a57f4a585670f5f42bb764af64899f20e379d80

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cc97dd874c5856b6d833c668e0e6d2194e7b77a50fd2241d05589d2cd5f1e986
MD5 eac0de4e34a331f183b9a8ed26218031
BLAKE2b-256 46f4683e20c5daa410375843721a24fd59c1473e4b36edee1172e35bd0552bbe

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1cc4aa407c4022b5762b4077b23f5f08992f4101a6d05256e7586cb71e45aea4
MD5 843b24252997b64d922a556f90393ebf
BLAKE2b-256 a1012aaaa26d98204c8411d37cb394c81253b5a911e96b1d3178da6548b7230e

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5f24d680a595ed4268643da4732fa8d1f331140ead89e2909c2b47150b81f4f6
MD5 4c617e3813d51cfe35a2e9865291427a
BLAKE2b-256 73ab0524ef732456a4afd2ce345dc168f6fcc2089f7ee326488799b6e8cdea59

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7a5ef71e8a821cd5e53726305351bb505f52b6ab895734130eccabd01308f26b
MD5 c26ff24f8c2104f7942e88ede22aa8f6
BLAKE2b-256 de02d11b65021a8931dcc13c3c44986a9941ba9094c4f50a315d4d95e3047006

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: fastnumbers-5.1.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 93.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fastnumbers-5.1.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 e61100f7eaa85cec1288af4329a11212e1829f72d5ba780fb37be480d7a1ae57
MD5 bba7a60fd174d1c9d2793f7b46948602
BLAKE2b-256 1d6457639b62970076fd18ba73ba96cfd4e24cec49d0e58fe39d011d798b40be

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 93eec14e2b34e17483f822bb36fc69de07e827d387fe19d30d19409a844e483d
MD5 6fade033c3f15cff8269c1d6e027ffb4
BLAKE2b-256 1824cc9de8a077436489f8b429ff38c22ab8072995d39f1a77adc87a42bcccd4

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 43c083a4214dbca0481bf6caf40421aa45f9e3f4586a389ea5617c03217f40e4
MD5 3eb2369494ad9e9e7ed76817407aad06
BLAKE2b-256 080dca4c23366422e8ea72346d1ddb0c10129e49153dd7e185a12a6c8d2bafb8

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bae3490133961c1ea770ba2d1573353bf6afc13ce83bee173ba0c1ad26cc102e
MD5 1f9fbca558fb234fc27915f9105fc8f8
BLAKE2b-256 b505f10e91024ba445cceb6046e2019f6c632f6e116585994ea85051bcaf963e

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c15d6d57b0c8f4649dfe7626808fee421a3854bc5721398f6dd283b1a8826fe5
MD5 f131152b145ca509eb80f25222b2ae8a
BLAKE2b-256 8d6549333749e352efee5c418fd33695e41f48d122bd84afba5aec9ec935db7f

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3ee4e875ec58c3a758815e06839d72a1de37a91af26fb066454e4be6f8dabaa5
MD5 b339a72b2eb6250d4699f1161078b52d
BLAKE2b-256 8c50727840ebdd2e57e738dba9729d8e692769e2ab6bad03f73bfd030601286c

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dd8a27be4a3d41de2d700a376dbab6b189ecbecbedec1f119525179792192741
MD5 820455937580cb7dec9744b3e39ace7f
BLAKE2b-256 79981959f03fa5a7da641c2e9c48eced0995af52f7d182f97305df01efa18a28

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c34f56dc23c53caea9c0f6545cbb7b6524b2ad0e8f02b3f77243cffe2eaa4ecc
MD5 2e99564e3027bd41fc76e8252d594a8d
BLAKE2b-256 d8eac0d0ae61fae43cd8653fba729462dd56ac4303d75c2c8d6c2541c1541175

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 36c47f9c2735b605f13d8f063cc91545e4a4ba5b43c85b700544a7abf4cc51c2
MD5 132e18ae1d765ea2ebe95696ac4add12
BLAKE2b-256 f92bca103f85092883d5dcf41c12733eaf67753158b5bb3b721b6aa0f5fdb093

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f27dc851e09901ccd911adc2ddb2b0b43cb21aa661b64ede96a566f7ae32d8e4
MD5 22308c9de2d495303db7643cdd8718a3
BLAKE2b-256 307008c8d1439323bf325cd588a29d66e20dd84e351fa8dfc5d15e46caefa3aa

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8eebdd67e59d09a306928afa7cbeb9c240d0c0e77491de2b6053b46e9b19b8ef
MD5 9803f7cb10d480137a6ac30de8c61d2a
BLAKE2b-256 eeeb38dca24a90ecab67c9a980dd9fe7fd57b2e43d9bbb3a8e4027904049fbf1

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: fastnumbers-5.1.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 92.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fastnumbers-5.1.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 d2a06698370398c3c5c91f2f961755ef86f9a222407edc753451e4119c369eed
MD5 e25b1c407b68ffeb8153848ea9a0f109
BLAKE2b-256 9b48331b9977711a0049b2328f845a9279a557819b7db071c5a16aa04a74d730

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 147a3a3e2f1d24b292d1d92ed0048a80f44a776331ae5c4fb1174b7023b0b159
MD5 47d15555077032e7dd762b9dab7b8ad3
BLAKE2b-256 e7501ab28402c8cf17daedc8d5da8056f86bfc6c8a5d88f9edb22342abffee79

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2ab367bc72e33596b81af73ac2f0166c2e62207f8f0c2c7ca5c6f8e5e2b58ba2
MD5 4cb4e0774a80d2de238647378bcada66
BLAKE2b-256 59201a7260426ec7a882a1edc379d1940d624ae206416c199acb8f6d17ff1f7b

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4da980a0abcb954a330630a70949e5833c973ad14480a34dafc997e8a1e2a6fa
MD5 13f72cbfc4dab138bfb4d1616bbe2ef2
BLAKE2b-256 d7e08bdfd894e14c7338e922451b21cd37c24a9599c1533ff7feaa7ad2c1121b

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 710139fc7f71a73465213cbbb103e0d246272478be420e65087cba6153f37c06
MD5 733b16981c75ff31a97f6db7936078e8
BLAKE2b-256 9e51cb3f6c658e5b64b9914f29144508167c285bbbac18826487f8437096b056

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e063262f508307838be325711493e4f4054c029e7532b6143f465b17e9627dad
MD5 9d7f513e6eccf403922171d066778dec
BLAKE2b-256 79fd6045ac6a40597754c760f65a761f8e9f42b26f58f0e3dec3e72a5f20b401

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 29dcea067bc10667807ce5ad1f2b68b7565b16a016233fca4ae890ea5cec133c
MD5 bd540ff5ed13bd5f8f534b3fd01cffc6
BLAKE2b-256 9a6c4681bbbb28c9121edac1a974f590281aa87345f7a6d6c00e2e57c1b7b36d

See more details on using hashes here.

File details

Details for the file fastnumbers-5.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-5.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 49454d102628c49a6791970de28153e3e7a488c2c577013df7f7d72387322348
MD5 f0ac8201a0af7d465225f1c371b24047
BLAKE2b-256 25ffe6193140dba8c6f128082520c514d0a93f5e8db8723e85dc379b625d08a6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page