Skip to main content

Quickly convert strings to number types.

Project description

https://travis-ci.org/SethMMorton/fastnumbers.svg?branch=master

Convert strings to numbers quickly.

This module is a Python C extension that will convert strings to numbers much faster than can be done using pure Python. Additionally, if the string cannot be converted, instead of a ValueError the return value can be either the input as-is or a default value.

To achieve this, the module makes some assumptions about the input type (input is int (or long), float, or str (or unicode)), and otherwise a TypeError is raised.

NOTE: The old safe_real, safe_float, safe_int, and safe_forceint functions are deprecated as of fastnumbers version >= 0.3.0; fast_real, fast_float, fast_int, and fast_forceint have each been reimplemented to fall back on the “safe” algorithm if overflow or loss of precision is detected and so the separate “safe” functions are no longer needed.

Examples

fastnumbers is essentially a fast C implementation of the following Pure Python function:

def fast_float(input, raise_on_invalid=False, default=None):
    try:
        return float(input)
    except ValueError:
        if raise_on_invalid:
            raise
        return default if default is not None else input

Some example usage:

>>> from fastnumbers import fast_float
>>> # Convert string to a float
>>> fast_float('56.07')
56.07
>>> # Unconvertable string returned as-is by default
>>> fast_float('bad input')
'bad input'
>>> # Unconvertable strings can trigger a default value
>>> fast_float('bad input', default=0)
0
>>> # 'default' is also the first optional positional arg
>>> fast_float('bad input', 0)
0
>>> # Integers are converted to floats
>>> fast_float(54)
54.0
>>> # The default built-in float behavior can be triggered with
>>> # "raise_on_invalid" set to True.
>>> fast_float('bad input', raise_on_invalid=True) #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): bad input
>>> # Single unicode characters can be converted.
>>> fast_float(u'\u2164')  # Roman numeral 5 (V)
5.0
>>> fast_float(u'\u2466')  # 7 enclosed in a circle
7.0

NOTE: If you need locale-dependent conversions, supply the fastnumbers function of your choice to locale.atof.

import locale
locale.setlocale(locale.LC_ALL, 'de_DE.UTF-8')
print(atof('468,5', func=fast_float))  # Prints 468.5

Timing

Just how much faster is fastnumbers than a pure python implementation? Below are the timing results for the *_float functions; please see the Timing Documentation for details into all timing results.

from timeit import timeit
float_try = '''\
def float_try(input):
    """Typical approach to this problem."""
    try:
        return float(input)
    except ValueError:
        return input
'''

float_re = '''\
import re
float_match = re.compile(r'[-+]?\d*\.?\d+(?:[eE][-+]?\d+)?$').match
def float_re(input):
    """Alternate approach to this problem."""
    try:
        if float_match(input):
            return float(input)
        else:
            return input
    except TypeError:
        return float(input)
'''

print('Invalid input:')
print("Try:", timeit('float_try("invalid")', float_try))
print("re:", timeit('float_re("invalid")', float_re))
print("fast", timeit('fast_float("invalid")', 'from fastnumbers import fast_float'))
print()
print('Valid input:')
print("try:", timeit('float_try("56.07")', float_try))
print("re:", timeit('float_re("56.07")', float_re))
print("fast", timeit('fast_float("56.07")', 'from fastnumbers import fast_float'))

The results will be similar to the below, by vary on the system you are on:

Invalid input:
Try: 2.27156710625
re: 0.570491075516
fast 0.173984050751

Valid input:
try: 0.378665924072
re: 1.08740401268
fast 0.204708099365

As you can see, in all cases fastnumbers beats the pure python implementations.

Full Suite of Functions

In addition to fast_float mentioned above, there are also

  • fast_real

  • fast_int

  • fast_forceint

  • isreal

  • isfloat

  • isint

  • isintlike

Please see the API Documentation for full details.

Author

Seth M. Morton

History

These are the last three entries of the changelog. See the package documentation for the complete changelog.

11-01-2015 v. 0.6.2

  • Fixed bug that caused a SystemError exception to be raised on Python 3.5 if a very large int was passed to the “fast” functions.

10-29-2015 v. 0.6.1

  • Fixed segfault on Python 3.5 that seemed to be related to a change in the PyObject_CallMethod C function.

  • Sped up unit testing.

  • Added tox.ini.

10-27-2015 v. 0.6.0

  • Fixed issue where giving a default of None would be ignored.

  • Added the “nan” and “inf” options to “fast_real” and “fast_float”. These options allow alternate return values in the case of nan or inf, respectively.

  • Improved documentation.

  • Improved testing.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

fastnumbers-0.6.2.zip (61.7 kB view details)

Uploaded Source

fastnumbers-0.6.2.tar.gz (45.6 kB view details)

Uploaded Source

File details

Details for the file fastnumbers-0.6.2.zip.

File metadata

  • Download URL: fastnumbers-0.6.2.zip
  • Upload date:
  • Size: 61.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for fastnumbers-0.6.2.zip
Algorithm Hash digest
SHA256 23c6e2251adfa2e2119222e3420d6f98ac04b56f1268a9debac1ce14cfaf938c
MD5 35c8059de57e7005325336ad02d71dd8
BLAKE2b-256 a0b02bc0a5f307e713dda7f9651becb766206c34ba72abe0a75b649ed6b14592

See more details on using hashes here.

File details

Details for the file fastnumbers-0.6.2.tar.gz.

File metadata

  • Download URL: fastnumbers-0.6.2.tar.gz
  • Upload date:
  • Size: 45.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for fastnumbers-0.6.2.tar.gz
Algorithm Hash digest
SHA256 a5088c9d92d6e5b31140a71615b5b0f47cc8fc5e376dd1eea48e8b9f8f2e28b0
MD5 e97d5f3d927145eb47da06fd776c9e7a
BLAKE2b-256 f3e8207806fb49403f6352b20f2ee84ff66057eda2444e6127018326e40e24bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page