Skip to main content

Quickly convert strings to number types.

Project description

https://travis-ci.org/SethMMorton/fastnumbers.svg?branch=master

Convert strings to numbers quickly.

This module is a Python C extension that will convert strings to numbers much faster than can be done using pure Python; numeric types can also be converted to other numeric types.

Additionally, the user has control over what happens in the event that the input string cannot be converted to a number:

  • the input can be returned as-is (this is the default behavior)

  • the input can be passed to a user-given key function then returned

  • a ValueError can be raised (like the built-in float or int)

  • a default value can be returned

Examples

fastnumbers contains functions that are fast C implementations similar to the following Pure Python function:

def fast_float(input, default=None, raise_on_invalid=False, key=None, inf=None, nan=None):
    import math
    try:
        x = float(input)
    except ValueError:
        if raise_on_invalid:
            raise
        elif key is not None:
            return key(input)
        return default if default is not None else input
    else:
        if inf is not None and math.isinf(x):
            return inf
        elif nan is not None and math.isnan(x):
            return nan
        else:
            return x

In addition to fast_float, there are also fast_real, fast_int, fast_forceint, isreal, isfloat, isint, and isintlike - please see the API Documentation for full details.

Some example usage:

>>> from fastnumbers import fast_float
>>> # Convert string to a float
>>> fast_float('56.07')
56.07
>>> # Unconvertable string returned as-is by default
>>> fast_float('bad input')
'bad input'
>>> # Unconvertable strings can trigger a default value
>>> fast_float('bad input', default=0)
0
>>> # 'default' is also the first optional positional arg
>>> fast_float('bad input', 0)
0
>>> # Integers are converted to floats
>>> fast_float(54)
54.0
>>> # One can ask inf or nan to be substituted with another value
>>> fast_float('nan')
nan
>>> fast_float('nan', nan=0.0)
0.0
>>> fast_float(float('nan'), nan=0.0)
0.0
>>> fast_float('56.07', nan=0.0)
56.07
>>> # The default built-in float behavior can be triggered with
>>> # "raise_on_invalid" set to True.
>>> fast_float('bad input', raise_on_invalid=True) #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): bad input
>>> # A key function can be used to return an alternate value for invalid input
>>> fast_float('bad input', key=len)
9
>>> fast_float(54, key=len)
54.0
>>> # Single unicode characters can be converted.
>>> fast_float(u'\u2164')  # Roman numeral 5 (V)
5.0
>>> fast_float(u'\u2466')  # 7 enclosed in a circle
7.0

NOTE: If you need locale-dependent conversions, supply the fastnumbers function of your choice to locale.atof.

import locale
locale.setlocale(locale.LC_ALL, 'de_DE.UTF-8')
print(atof('468,5', func=fast_float))  # Prints 468.5

Timing

Just how much faster is fastnumbers than a pure python implementation? Below are the timing results for the *_float functions; please see the Timing Documentation for details into all timing results.

from timeit import timeit
float_try = '''\
def float_try(input):
    """Typical approach to this problem."""
    try:
        return float(input)
    except ValueError:
        return input
'''

float_re = '''\
import re
float_match = re.compile(r'[-+]?\d*\.?\d+(?:[eE][-+]?\d+)?$').match
def float_re(input):
    """Alternate approach to this problem."""
    try:
        if float_match(input):
            return float(input)
        else:
            return input
    except TypeError:
        return float(input)
'''

print('Invalid input:')
print("Try:", timeit('float_try("invalid")', float_try))
print("re:", timeit('float_re("invalid")', float_re))
print("fast", timeit('fast_float("invalid")', 'from fastnumbers import fast_float'))
print()
print('Valid input:')
print("try:", timeit('float_try("56.07")', float_try))
print("re:", timeit('float_re("56.07")', float_re))
print("fast", timeit('fast_float("56.07")', 'from fastnumbers import fast_float'))

The results will be similar to below, but vary based on your system:

Invalid input:
Try: 2.27156710625
re: 0.570491075516
fast 0.173984050751

Valid input:
try: 0.378665924072
re: 1.08740401268
fast 0.204708099365

As you can see, in all cases fastnumbers beats the pure python implementations.

Author

Seth M. Morton

History

These are the last three entries of the changelog. See the package documentation for the complete changelog.

03-08-2016 v. 0.7.3

  • Newline is now considered to be whitespace (for consistency with the builtin float and int).

03-07-2016 v. 0.7.2

  • Fixed overflow bug in exponential parts of floats.

02-29-2016 v. 0.7.1

  • Fixed compilation bug with MSVC.

  • Added “key” function to transform invalid input arguments.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

fastnumbers-0.7.3.zip (63.1 kB view details)

Uploaded Source

fastnumbers-0.7.3.tar.gz (46.7 kB view details)

Uploaded Source

File details

Details for the file fastnumbers-0.7.3.zip.

File metadata

  • Download URL: fastnumbers-0.7.3.zip
  • Upload date:
  • Size: 63.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for fastnumbers-0.7.3.zip
Algorithm Hash digest
SHA256 bea18039799895ebac9ec1ff11e4f1a2388ed06f150e01716814d1fb04d56460
MD5 e8689632f800b2b41b57dacbf74c9a47
BLAKE2b-256 731c4519b9d038f83b0abbbcc5becb537e670471f55cbf6b988e8b9cf5146b34

See more details on using hashes here.

File details

Details for the file fastnumbers-0.7.3.tar.gz.

File metadata

  • Download URL: fastnumbers-0.7.3.tar.gz
  • Upload date:
  • Size: 46.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for fastnumbers-0.7.3.tar.gz
Algorithm Hash digest
SHA256 3ac0b5bbaa42454b5962bf49474d6d19ddecc0500a97e39da313737596c0301e
MD5 30d3dbf8adca8e5aae336a684a207b81
BLAKE2b-256 614ccd4b36bc2c858c5873951feb454dac133bc2c1032ff3428a351af4f0ef72

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page