Skip to main content

Super-fast and clean conversions to numbers.

Project description

https://img.shields.io/pypi/v/fastnumbers.svg https://img.shields.io/pypi/pyversions/fastnumbers.svg https://img.shields.io/pypi/l/fastnumbers.svg https://github.com/SethMMorton/fastnumbers/workflows/Tests/badge.svg https://codecov.io/gh/SethMMorton/fastnumbers/branch/main/graph/badge.svg

Super-fast and clean conversions to numbers.

fastnumbers is a module with the following three objectives (in order of decreasing importance as to why the module was created):

  1. Provide a set of convenience functions that wrap calls to int and float and provides easy, concise, powerful, fast and flexible error handling.

  2. Provide a set of functions that can be used to rapidly identify if an input could be converted to int or float.

  3. Provide drop-in replacements for the Python built-in int and float that are on par or faster with the Python equivalents (see the Timing_ section for details). These functions should behave identically to the Python built-ins except for a few specific corner-cases as mentioned in the API documentation for those functions.

    • PLEASE read the quick start for these functions to fully understand the caveats before using them.

NOTICE: As of fastnumbers version 4.0.0, only Python >= 3.7 is supported.

NOTICE: As of fastnumbers version 4.0.0, the functions fast_real, fast_float, fast_int, fast_forceint, isreal, isfloat, isint, and isintlike have been deprecated and are replaced with try_real, try_float, try_int, try_forceint, check_real, check_float, check_int, and check_intlike, respectively. These new functions have more flexible APIs and have names that better reflect the intent of the functions. The old functions can still be used (they will never be removed from fastnumbers), but the new ones should be preferred for new development.

NOTICE: As of fastnumbers version 4.0.0, query_type now sets allow_underscores to False by default instead of True.

Quick Start

There are three broad categories of functions exposed by fastnumbers. The below quick start will demonstrate each of these categories. The quick start is “by example”, and will show a sample interactive session using the fastnumbers API.

Error-Handling Functions

try_float will be used to demonstrate the functionality of the try_* functions.

>>> from fastnumbers import RAISE, try_float
>>> # Convert string to a float
>>> try_float('56.07')
56.07
>>> # Integers are converted to floats
>>> try_float(54)
54.0
>>>
>>> # Unconvertable string returned as-is by default
>>> try_float('bad input')
'bad input'
>>> # Unconvertable strings can trigger a default value
>>> try_float('bad input', on_fail=0)
0
>>>
>>> # One can ask inf or nan to be substituted with another value
>>> try_float('nan')
nan
>>> try_float('nan', nan=0.0)
0.0
>>> try_float(float('nan'), nan=0.0)
0.0
>>> try_float('56.07', nan=0.0)
56.07
>>>
>>> # The default built-in float behavior can be triggered with
>>> # RAISE given to "on_fail".
>>> try_float('bad input', on_fail=RAISE) #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): bad input
>>>
>>> # A function can be used to return an alternate value for invalid input
>>> try_float('bad input', on_fail=len)
9
>>> try_float(54, on_fail=len)
54.0
>>>
>>> # Single unicode characters can be converted.
>>> try_float('\u2164')  # Roman numeral 5 (V)
5.0
>>> try_float('\u2466')  # 7 enclosed in a circle
7.0

try_int behaves the same as try_float, but for integers.

>>> from fastnumbers import try_int
>>> try_int('1234')
1234
>>> try_int('\u2466')
7

try_real is like try_float or try_int depending on if there is any fractional component of thi return value.

>>> from fastnumbers import try_real
>>> try_real('56')
56
>>> try_real('56.0')
56
>>> try_real('56.0', coerce=False)
56.0
>>> try_real('56.07')
56.07
>>> try_real(56.07)
56.07
>>> try_real(56.0)
56
>>> try_real(56.0, coerce=False)
56.0

try_forceint always returns an integer.

>>> from fastnumbers import try_forceint
>>> try_forceint('56')
56
>>> try_forceint('56.0')
56
>>> try_forceint('56.07')
56
>>> try_forceint(56.07)
56

About the on_fail option

The on_fail option is a way for you to do anything in the event that the given input cannot be converted to a number. It can

  • return given object as-is if set to fastnumbers.INPUT (this is the default)

  • raise a ValueError if set to fastnumbers.RAISE

  • return a default value if given any non-callable object

  • call a function with the given object if given a single-argument callable

Below are a couple of ideas to get you thinking.

NOTE:: There is also an on_type_error option that behaves the same as on_fail except that a) it is triggered when the given object is of an invalid type and b) the default value is fastnumbers.RAISE, not fastnumbers.INPUT.

>>> from fastnumbers import INPUT, RAISE, try_float
>>> # You want to convert strings that can be converted to numbers, but
>>> # leave the rest as strings. Use fastnumbers.INPUT (the default)
>>> try_float('45.6')
45.6
>>> try_float('invalid input')
'invalid input'
>>> try_float('invalid input', on_fail=INPUT)
'invalid input'
>>>
>>>
>>>
>>> # You want to convert any invalid string to NaN
>>> try_float('45.6', on_fail=float('nan'))
45.6
>>> try_float('invalid input', on_fail=float('nan'))
nan
>>>
>>>
>>>
>>> # Simple callable case, send the input through some function to generate a number.
>>> try_float('invalid input', on_fail=lambda x: float(x.count('i')))  # count the 'i's
3.0
>>>
>>>
>>>
>>> # Suppose we know that our input could either be a number, or if not
>>> # then we know we just have to strip off parens to get to the number
>>> # e.g. the input could be '45' or '(45)'. Also, suppose that if it
>>> # still cannot be converted to a number we want to raise an exception.
>>> def strip_parens_and_try_again(x):
...     return try_float(x.strip('()'), on_fail=RAISE)
...
>>> try_float('45', on_fail=strip_parens_and_try_again)
45.0
>>> try_float('(45)', on_fail=strip_parens_and_try_again)
45.0
>>> try_float('invalid input', on_fail=strip_parens_and_try_again) #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): invalid input
>>>
>>>
>>>
>>> # Suppose that whenever an invalid input is given, it needs to be
>>> # logged and then a default value is returned.
>>> def log_and_default(x, log_method=print, default=0.0):
...     log_method("The input {!r} is not valid!".format(x))
...     return default
...
>>> try_float('45', on_fail=log_and_default)
45.0
>>> try_float('invalid input', on_fail=log_and_default)
The input 'invalid input' is not valid!
0.0
>>> try_float('invalid input', on_fail=lambda x: log_and_default(x, default=float('nan')))
The input 'invalid input' is not valid!
nan

Checking Functions

check_float will be used to demonstrate the functionality of the check_* functions, as well as the query_type function.

>>> from fastnumbers import check_float
>>> from fastnumbers import ALLOWED, DISALLOWED, NUMBER_ONLY, STRING_ONLY
>>> # Check that a string can be converted to a float
>>> check_float('56')
True
>>> check_float('56', strict=True)
False
>>> check_float('56.07')
True
>>> check_float('56.07 lb')
False
>>>
>>> # Check if a given number is a float
>>> check_float(56.07)
True
>>> check_float(56)
False
>>>
>>> # Specify if only strings or only numbers are allowed
>>> check_float(56.07, consider=STRING_ONLY)
False
>>> check_float('56.07', consider=NUMBER_ONLY)
False
>>>
>>> # Customize handling for nan or inf (see API for more details)
>>> check_float('nan')
False
>>> check_float('nan', nan=ALLOWED)
True
>>> check_float(float('nan'))
True
>>> check_float(float('nan'), nan=DISALLOWED)
False

check_int works the same as check_float, but for integers.

>>> from fastnumbers import check_int
>>> check_int('56')
True
>>> check_int(56)
True
>>> check_int('56.0')
False
>>> check_int(56.0)
False

check_real is very permissive - any float or integer is accepted.

>>> from fastnumbers import check_real
>>> check_real('56.0')
True
>>> check_real('56')
True
>>> check_real(56.0)
True
>>> check_real(56)
True

check_intlike checks if a number is “int-like”, if it has no fractional component.

>>> from fastnumbers import check_intlike
>>> check_intlike('56.0')
True
>>> check_intlike('56.7')
False
>>> check_intlike(56.0)
True
>>> check_intlike(56.7)
False

The query_type function can be used if you need to determine if a value is one of many types, rather than whether or not it is one specific type.

>>> from fastnumbers import query_type
>>> query_type('56.0')
<class 'float'>
>>> query_type('56')
<class 'int'>
>>> query_type(56.0)
<class 'float'>
>>> query_type(56)
<class 'int'>
>>> query_type(56.0, coerce=True)
<class 'int'>
>>> query_type('56.0', allowed_types=(float, int))
<class 'float'>
>>> query_type('hey')
<class 'str'>
>>> query_type('hey', allowed_types=(float, int))  # returns None

Drop-in Replacement Functions

PLEASE do not take it for granted that these functions will provide you with a speedup - they may not. Every platform, compiler, and data-set is different, and you should perform a timing test on your system with your data to evaluate if you will see a benefit. As you can see from the data linked in the Timing section, the amount of speedup you will get is particularly data-dependent. In general you will see a performance boost for floats (and this boost increases as the size of the float increases), but for integers it is largely dependent on the length of the integer. You will likely not see a performance boost if the input are already numbers instead of strings.

NOTE: in the below examples, we use from fastnumbers import int instead of import fastnumbers. This is because calling fastnumbers.int() is a bit slower than just int() because Python has to first find fastnumbers in your namespace, then find int in the fastnumbers namespace, instead of just finding int in your namespace - this will slow down the function call and defeat the purpose of using fastnumbers. If you do not want to actually shadow the built-in int function, you can do from fastnumbers import int as fn_int or something like that.

>>> # Use is identical to the built-in functions
>>> from fastnumbers import float, int
>>> float('10')
10.0
>>> int('10')
10
>>> float('bad input') #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
  ...
ValueError: invalid literal for float(): bad input

real is provided to give a float or int depending on the fractional component of the input.

>>> from fastnumbers import real
>>> real('56.0')
56
>>> real('56.7')
56.7
>>> real('56.0', coerce=False)
56.0

Timing

Just how much faster is fastnumbers than a pure python implementation? Please look https://github.com/SethMMorton/fastnumbers/tree/main/profiling.

High-Level Algorithm

For integers, CPython goes to great lengths to ensure that your string input is converted to a number correctly and losslessly (you can prove this to yourself by examining the source code for integer conversions). This extra effort is only needed for integers that cannot fit into a 64-bit integer data type - for those that can, a naive algorithm of < 10 lines of C code is sufficient and significantly faster. fastnumbers uses a heuristic to determine if the input can be safely converted with the much faster naive algorithm, and if so it does so, falling back on the CPython implementation for longer input strings. Most real-world numbers pass the heuristic and so you should generally see improved performance with fastnumbers for integers.

For floats, fastnumbers utilizes the ultra-fast fast_float::from_chars function to convert strings representing floats into a C double both quickly and safely - the conversion provides the same accuracy as the CPython float conversion function but instead of scaling linearly with length of the input string it seems to have roughly constant performance. By completely bypassing the CPython converter we get significant performance gains with no penalty, so you should always see improved performance with fastnumbers for floats.

Installation

Use pip!

$ pip install fastnumbers

How to Run Tests

Please note that fastnumbers is NOT set-up to support python setup.py test.

The recommended way to run tests is with tox. Suppose you want to run tests for Python 3.8 - you can run tests by simply executing the following:

$ tox -e py38

tox will create virtual a virtual environment for your tests and install all the needed testing requirements for you.

If you want to run testing on all supported Python versions you can simply execute

$ tox

If you do not wish to use tox, you can install the testing dependencies with the dev-requirements.txt file and then run the tests manually using pytest.

$ pip install -r dev/requirements.txt
$ pytest

Author

Seth M. Morton

History

Please visit the changelog on GitHub or in the documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastnumbers-4.0.1.tar.gz (149.0 kB view details)

Uploaded Source

Built Distributions

fastnumbers-4.0.1-cp311-cp311-win_amd64.whl (59.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastnumbers-4.0.1-cp311-cp311-win32.whl (57.8 kB view details)

Uploaded CPython 3.11 Windows x86

fastnumbers-4.0.1-cp311-cp311-musllinux_1_1_x86_64.whl (960.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

fastnumbers-4.0.1-cp311-cp311-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

fastnumbers-4.0.1-cp311-cp311-musllinux_1_1_aarch64.whl (947.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

fastnumbers-4.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (345.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastnumbers-4.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (343.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

fastnumbers-4.0.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (350.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastnumbers-4.0.1-cp311-cp311-macosx_11_0_arm64.whl (62.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastnumbers-4.0.1-cp311-cp311-macosx_10_9_x86_64.whl (64.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastnumbers-4.0.1-cp311-cp311-macosx_10_9_universal2.whl (116.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-4.0.1-cp310-cp310-win_amd64.whl (59.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastnumbers-4.0.1-cp310-cp310-win32.whl (57.8 kB view details)

Uploaded CPython 3.10 Windows x86

fastnumbers-4.0.1-cp310-cp310-musllinux_1_1_x86_64.whl (954.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

fastnumbers-4.0.1-cp310-cp310-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

fastnumbers-4.0.1-cp310-cp310-musllinux_1_1_aarch64.whl (941.9 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

fastnumbers-4.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (342.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastnumbers-4.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (340.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

fastnumbers-4.0.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (346.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastnumbers-4.0.1-cp310-cp310-macosx_11_0_arm64.whl (62.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastnumbers-4.0.1-cp310-cp310-macosx_10_9_x86_64.whl (64.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastnumbers-4.0.1-cp310-cp310-macosx_10_9_universal2.whl (116.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-4.0.1-cp39-cp39-win_amd64.whl (59.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastnumbers-4.0.1-cp39-cp39-win32.whl (57.8 kB view details)

Uploaded CPython 3.9 Windows x86

fastnumbers-4.0.1-cp39-cp39-musllinux_1_1_x86_64.whl (953.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

fastnumbers-4.0.1-cp39-cp39-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

fastnumbers-4.0.1-cp39-cp39-musllinux_1_1_aarch64.whl (941.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

fastnumbers-4.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (341.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastnumbers-4.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (339.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

fastnumbers-4.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (345.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastnumbers-4.0.1-cp39-cp39-macosx_11_0_arm64.whl (62.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastnumbers-4.0.1-cp39-cp39-macosx_10_9_x86_64.whl (64.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fastnumbers-4.0.1-cp39-cp39-macosx_10_9_universal2.whl (116.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-4.0.1-cp38-cp38-win_amd64.whl (59.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastnumbers-4.0.1-cp38-cp38-win32.whl (58.0 kB view details)

Uploaded CPython 3.8 Windows x86

fastnumbers-4.0.1-cp38-cp38-musllinux_1_1_x86_64.whl (954.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

fastnumbers-4.0.1-cp38-cp38-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

fastnumbers-4.0.1-cp38-cp38-musllinux_1_1_aarch64.whl (942.3 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

fastnumbers-4.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (337.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fastnumbers-4.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (335.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

fastnumbers-4.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (345.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastnumbers-4.0.1-cp38-cp38-macosx_11_0_arm64.whl (62.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fastnumbers-4.0.1-cp38-cp38-macosx_10_9_x86_64.whl (64.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

fastnumbers-4.0.1-cp38-cp38-macosx_10_9_universal2.whl (116.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

fastnumbers-4.0.1-cp37-cp37m-win_amd64.whl (59.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

fastnumbers-4.0.1-cp37-cp37m-win32.whl (57.8 kB view details)

Uploaded CPython 3.7m Windows x86

fastnumbers-4.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl (949.4 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

fastnumbers-4.0.1-cp37-cp37m-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

fastnumbers-4.0.1-cp37-cp37m-musllinux_1_1_aarch64.whl (936.4 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

fastnumbers-4.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (336.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fastnumbers-4.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (332.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

fastnumbers-4.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (344.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastnumbers-4.0.1-cp37-cp37m-macosx_10_9_x86_64.whl (64.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file fastnumbers-4.0.1.tar.gz.

File metadata

  • Download URL: fastnumbers-4.0.1.tar.gz
  • Upload date:
  • Size: 149.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for fastnumbers-4.0.1.tar.gz
Algorithm Hash digest
SHA256 3e7d74b1debb44c4803c0fea59a63d0785d6a26ebcb902e2262b3c3fba81b400
MD5 b05a7b4ab5c5c77d7c5d93039a17cd51
BLAKE2b-256 e38e788c5c422a9d3e9dc84457769bfe5ead26e9d5decd6b5924f7eced22c6b5

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7ffc24449c9d95bca9ca440dbac33971f762a06be7f70d51605179367d5d15a0
MD5 26af7505373ecd41eb2fd5a148add0d8
BLAKE2b-256 c9b68c1a62c6b3e1a0dceae352960570a604119f9fae36643e50c2924b9468af

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: fastnumbers-4.0.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 57.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for fastnumbers-4.0.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 9b919d43c9d59c05fe3f9ba3eb6e22a5c1183270e5f856972f48c88d4388e22b
MD5 c3441a3090e5a482bb31063fde18698d
BLAKE2b-256 1bb2ebd0059e1175dad5ad4f253615cebeaa3d0733ca6f76282f6411b3f04f21

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ae4c8a89d0736ae5a91bd95fee8faba2af49af6e6e5abfb1de3f56dcaa2813d7
MD5 5cb5da0f2e5781db32870423387d3142
BLAKE2b-256 d65e54e0cbe4a2465fabd353932dde830615efd0c2b6edfd79b7263f5c54293a

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 36afc1cfdd4a613c0f81dff4591c06b071a5cf90e1951499add4af56b5b5af13
MD5 1ba563fdc53604fc459d85f9f76a33c4
BLAKE2b-256 e4f2ca38c38863772bc6ca1e45e98696df3a6e8bc0dd79818446d747664c974e

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b026bc35b1c35afce546dabc5a5f1989c50d100167fa8b2351f3b79c3eedbb6a
MD5 98b7813124d91d6476ff508671656070
BLAKE2b-256 c0bca7b0de1958b7eac5d2b9260fb89171ebb53b094bbb89ce148005bf8e3413

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66042bf5372b62c5dae3fd7246543bc7996ccf490be24190f2200e98bd65debf
MD5 2f31977adb6bf58573169807d7eb4a7d
BLAKE2b-256 88d212e80c846232da180a7ef00e7a021fe7557e3b298f328baa65bde30977f6

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 055386fdafb995d8834cbaf6fc403c655f32c3547324a23836486e2bf683545e
MD5 aa0af04d5523e60ee703e477529416db
BLAKE2b-256 cd72b59f8b7298d5527fab1b5f3db03add80ad4b87150319d733280a2f9953ff

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eded87d617ab5405ed84980e1dbc91d837bca1657d47615443eddf961fe768ac
MD5 ba202e1ca60da9d7e726044ae85f2272
BLAKE2b-256 e464085a7859bb9241b81eb95288ce03ba1513e1ad53e059523ea93cd1070872

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7098cf06029d0eebd27b02b56e1c22d5857282bba4051112fd852a23576f9147
MD5 f31af9c9bac8cedef8e47562240da253
BLAKE2b-256 861b3f656c6d45c72332f8f76729c69553e590690ebbc238986ce928f784db9b

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0819a86b21e672e9e0cad4dbe187161aaf3f677ab4d6ac391c41297684d6e164
MD5 be7d6c87cacc52c18b2174fd7e8a5171
BLAKE2b-256 1f86a01c4ea70069040e5b95af1f2611e701fddbd0153735fbb4fb7397697cb5

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 798d608cf11c15be65cfdc53cc536d1666ecd7568b551663688c2b4600d6f8fa
MD5 138957f98f21a54b47b851339e099e51
BLAKE2b-256 064f616bd0954eeb379756a23b920c676e81f6a7871481e953d2b65b7391b3c9

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6d9035d0259b185a6d0b80690ea43f4303cb58bd6bbad4373318ca04b43bc9d1
MD5 96d275759cd55e46a522f584b9ade351
BLAKE2b-256 8e999aaf1338596b06bc73dc0e7a22e72faf7144c76b2bbf839aeadd92a70cb3

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: fastnumbers-4.0.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 57.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for fastnumbers-4.0.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f156f8f4a3e9953fce55610d4e7960cb220686e333d7d26194e3c30ea6b3e9a6
MD5 cd948883ccd54965922f988526ec13ce
BLAKE2b-256 9e92c57a78999b6ecec4a63588e0cc54c32f84ef4a96d4bbcd6e7aa05f1759d6

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c42885e704dd980662c967e5e6ce52455d872281ebc0a3e64571d2cf4c873675
MD5 1210fa920b7911b0b4c927b0b43c2a8f
BLAKE2b-256 77d7518028e8f6f32591b8f3c6983ce64f62cf5be34ece47a70b4ac09ed1dcc0

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f4fca6174a46838feb40bccdd935d3c4b9fac21c7ae48eb7af24296761fcce4b
MD5 eab96893d3ed2f9ef05b3b8108e55f52
BLAKE2b-256 ab2612d668bc438024f4d18c8334b119b464c4b5ec5448ab4a74ab2c39ebba29

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d70d6627de6f76fbd07731c4281e177b9bd74fae1cd5cfd5a057a4010ae5ca05
MD5 7d766260621b888004fd7d9a9090ba4f
BLAKE2b-256 96bb37b47619c45a0b0816c9dd5d72cb828fd5de25c6e4aed5c06ac37ca4d32b

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f9ae36af22688c972eb354e1cefc55b6d2b2530bfe9ba787f90b3ca7cfb7e6e9
MD5 117d7ed5a99078b7cb1fc1b3d0edb52a
BLAKE2b-256 6b81b959d612076e750abd60d951ddc89641eab3049820a83f1cf6a03a212e4a

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9f84b5abf7e486be59beb12f763f1fca355cdbc5091ddfd61d0092adbc3a4600
MD5 e86e6ce040d26b3bdd2052d73568e52a
BLAKE2b-256 27b420a1689e13619adba9819cee7036801f29d03f624aa8b0e7e5e636a60f7f

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c5396b7c9a5c5b0c90c2fe41f00dc0e7ab275de91d3a9e101cbdf7368aef6ce5
MD5 05083c08bfc1aede5733e123a8900783
BLAKE2b-256 610013c2ae879d88a9a0b469a886006ec01a90cb573a2c84c67a3569b3767056

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1720e74b88c31d966903be372a98c7c71d6731587263923c63b1984bd2dfb8fa
MD5 313a6dff5582f5155c722f680035674c
BLAKE2b-256 6004d26a0a7ef66007b166150f0c26cfa06253a9a441ea300e8ee39f4613ac19

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 038dec4b989180362828531537c2ce9dc4eebf680b014c7fc2792e627e669e1a
MD5 993d8d76fdd1a4997ba599197fe1f782
BLAKE2b-256 de715b478428db890eee7c8c34e870ccadf675cf7393c337a6d24131f9b3f7c1

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 112126949bad6bbc982fe6168d686443c05514540b808096759d4541598e7b8e
MD5 ed040c70bc41a3aea947e8c21787b93c
BLAKE2b-256 ae289ed30e1fe403c94783db709b7d100793bb3a41e3a0cc4d4a05863aa5e485

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a3f8f80a825fdc81483e23fd044800c900533d2010de8eee7b49a537bd650503
MD5 e12d00b8438907fb84a65da402ca3df3
BLAKE2b-256 d91e1fdf65b871e20bb28d3154cbdfcfb212782d6903ac5b36c0c5c324d89b5c

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: fastnumbers-4.0.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 57.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for fastnumbers-4.0.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4f4e7952c22b00ff99830d51203e887df81c926a6d5f704e68225c2e689240ca
MD5 a0ded0a1b0971d72be69f8d69c84798d
BLAKE2b-256 b97eb1b80a2319a7c845ba0b882a1840d00a8de4e34e6b3ea68f5abeebbbb248

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6fa735802cdc330338a5c37eb03157cf4f1a75d17e55b1120f57eec4da7ead52
MD5 ecac600779972bd351a441e3a99d4e64
BLAKE2b-256 1b303fd3e20305385a7666504d45f068ab301d54034642b43c29366dd368b121

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f0a11e7b1f9a74888f06c02bec2bb5aa37fd8f7ba7d5e606d2ce38c2e8604f99
MD5 481823d4c3fa818f2a2e4fd22bd8a960
BLAKE2b-256 80665982a9e5764612240b96fc3dc2a50bc68c563cd68345767d62fb05094ef2

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 146036bd2d02fbb5dd81fa14282f93e7c1f477260f0ef626ac7c58c27d678a57
MD5 44b58fe96289fe7e1f4e63b4b422e5af
BLAKE2b-256 8a8ac95ba8a4ffce95c906ca10f69cd24c1aa48b762b9f958e788d97a2ab52ac

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 410f8a4bb4ac5615961e0da1b427c094d5f81fd53f3011c4e15f513ace9deb3b
MD5 1c47b831e8f84690f0c9277cbe78a97a
BLAKE2b-256 f6b4c80aedbeded543866507768ab4c6d4e781afd8f20620f24f3274da73f8f1

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 52e8e2cd805b3df973bcfffaf707dd87890ab02e99924c535191b6a80dfdbdaf
MD5 1c8f94f66f8ba9b7f67138294903991e
BLAKE2b-256 da3d1d3f83d8df053005609cdaf191e1b4a24f662d0576081df6c70feef42ee8

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6755abf14c9e24239555cd409b00f4041be6407a1db2a9e83e4c77052f984ea0
MD5 865d1cbe67f3857c2c1d296a8b89cb8c
BLAKE2b-256 de6e5890f4b58f7372d810e767f5ea3c79f00a1db65034cba734009c066f558f

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bb4c7b91cd030ecde58d907f61076e4b78879af84b84ce188ffcef543963e0f6
MD5 51747d3f2a006c2bd777f60548b42c0a
BLAKE2b-256 6dd5fd8a1499c1536070664f40c2cebed387a2be966fa9817437d621de73d556

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 13abe99503e8d21796ffffb0c0bfcf72e8d620db44ef462b81f21366ab05a1d8
MD5 fe12f267e011d3facf07ca54e4888a04
BLAKE2b-256 c561132c378f0a6a871931a775a03cf9729cf136ff4354c226a79790d15e34b2

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 29a73d9772984d1c05cee3b6ec46f0ab22eb02b69eade5f06928bf0f9719d150
MD5 030fa65ab0494a8bf87fde8560414e9d
BLAKE2b-256 ae59118286b48a03fd6d0f6d53eb6e367c8fd641a8590dc93514f8ba32490570

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fc200d2c1e45560b448372c7057860b766363108d61d1ae92273c669933211e0
MD5 b880faf2ca7a7a906df1d21024f9fa63
BLAKE2b-256 3d8083ccda6d16e2eacc932caa73f986c7556260e583ecd6f777e018cb7dba64

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: fastnumbers-4.0.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 58.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for fastnumbers-4.0.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0944a08d64db180777b3378d303aa67caaf9286687734a3efdaa394fd3ce286f
MD5 39151a7ba50b76d302c105ddfc30f40d
BLAKE2b-256 a111aaf1d2ece695e40462662a97dc2f5dbceb51d8eac8c524b93d0746ec5d8c

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a7196868b36fdc22198d2fa899247483a8d1113e979fb429b6aee61ab5c4cd1a
MD5 26a1ef6d19d212b24671186e41770d52
BLAKE2b-256 97718ec7ed826384749438c93228a008b5adf4162006d39d2dc3ce183e46174b

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f41deb6faabfc86882f5fde4cfb748c4ebb7b9059bc2480f5441cb5f76bb6a7c
MD5 b309b629564d068952c57a7af6b625ea
BLAKE2b-256 6451d9d75823f53b9c8de55975baed16ade7c7ef56d2c395f0a840f9c78ade24

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7156c239cf7b248ecc3fd832f2b4824dd38af457f089355872619292e06f68c8
MD5 97fd6bed1b7c54a2fe1d982b3c5195a0
BLAKE2b-256 4aff9fd399f0984ae13deebd0dd6d5278e21d4710f0a36e6b5e293576e3c4a32

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33780faa57ba02f5d8100186b95f8164c75c68185e39078ef9a9cbf080b7ffa1
MD5 8f543d9ed0537941e53dfbd34d65ddf6
BLAKE2b-256 d015943210bb121640df73e21d679d79214694ec70212dbbddaef7605d74a8cc

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d4a8dc0ce99240a8f562eb9d788b2d7f1977fe0130f897e5e8faa858683ced0
MD5 4e0f8c96e6c1276fba6579bae08ab73d
BLAKE2b-256 59427b0825223c94ecaff7bf848c42384f49d2c4b49dfd7381cf58d934fca0f0

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b88a5a9debcbfe7d3e48f08e1d62b50397f8fd93f281d2b13f1cfdd78f50d541
MD5 08e3d980ff8c337de65b8b5a4df7fd0b
BLAKE2b-256 f9fbe48349ec7e0a4b34900c92a78126c2c06cc252c35ebe2be72211771fe09d

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 57a76b54035cb2cc03fa406ba6ab700d836a544e48894ed8d033deceef76296a
MD5 58b6628871c817a8c5a91f53fc48da1b
BLAKE2b-256 47a8bd0dd6da036bbee8c4f2ac2b197d66d62052fe60fba3a27f10cecb446503

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4790384febeb0c3e1c9d35aea15a72aeaa742f347632e3303755fb31776db310
MD5 a2e5f6db07e673efad067e2d680bb875
BLAKE2b-256 53db4eec75c5dc7ae0f0d1573a54db7b8e45066285c00ddee3c9c35784017c64

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8bea0265151647015a239e9519086515c2eb45df8e5807d810f7e1d415f4d08f
MD5 3a7c3bd08ccc8280eabd2dbb7f657dbf
BLAKE2b-256 428113d931ed35f112114ae180075caec75f31ce05cd3420b63b0073d5b67a77

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4e0899bea775e9b9a0605de3b31f79325c21fb23b3d209513680952980011d4c
MD5 1e9835524eb75946cce7151bf789f9ed
BLAKE2b-256 a7cbfed72ac67f97bdc161303bfc2ef33ffe4c384a75d040a84a45461e8b61df

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: fastnumbers-4.0.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 57.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for fastnumbers-4.0.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 6d7555410ca43605b875fa9703c255ff8e63cfb10d4bd8505ad8a6f503b6928c
MD5 867942b23696404488ede0f4fa04a851
BLAKE2b-256 88b5afa927b7599faabfab982e779931c11fb8843742810f8dc3c900aa2ca82f

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cb8590892d676b8524b09651a7f0c037c926590ec1c8dfaa6fd1c97239a5ca13
MD5 05b387860795e0cdd178604c34cb29c0
BLAKE2b-256 2a544457d81627dc3ec569ed18f352937635760581c2320cf5f6345c0e5296f7

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 15f3e2c02fa775d5241d00b09e2255b95be178e5fa1dea36c9aff8f0f66fa80c
MD5 228320e7b3dfc1cb5a3895c1e909c644
BLAKE2b-256 4e31cdf245cb10a8c1f15dcc0fffd9cf00b360d76a3dca8e5415d589f7a34182

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 427fa929f53a8222e1782e02b14484139c42dbd85ec420223ff146a254ac4e6e
MD5 de98f966032c422e7de83513f99c4ab3
BLAKE2b-256 2241317681b6677b9b5c211a431ef9457920b120c86e33350d7c5965fa9daae5

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d48c9885dd0b71786727b9a021433b9d93aafed43af197ce9b1674192a597b1
MD5 43b8b528ae49a38541a59afebb2019fd
BLAKE2b-256 532063cdcad441468c024ded7873ab47651b1b6f3409e3256003de77c470b0d7

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2eb5452333b23253b7b39f4f03aaf3ccd885f0070ff2f13db3eed7bf9032c928
MD5 87f94802823ef69aeff85c32d100e78e
BLAKE2b-256 425b28376cf260bf93a42addad5ce7f5b009388225463af5cb853811b56a2b05

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 219d981c647ca638a9f28629fda3bd7d5ded51c677ae69574c899eb369642a60
MD5 89b537a82626e873e4179065a9cdf325
BLAKE2b-256 11c26b0a6321d5bf64980f96a68b8b57dccf63d7b30b24fe01bb2657314b76af

See more details on using hashes here.

File details

Details for the file fastnumbers-4.0.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastnumbers-4.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 876b24eb684b1988c3ab5eaa7d2f6408daf6ce0604ccba20b443d63b8a813867
MD5 e92abaabeecc44dbc146271e5e3cb181
BLAKE2b-256 d5c28c909cea00d722cbb1cb93e3103bf25b6d25ccd033f6d24a578fd33477be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page