Skip to main content

Fastai implementation of papers.

Project description

Welcome to fastpapers

Play LEGO with papers.

#all_slow

fastpapers is a python library where I use fastai to reproduce papers on Jupyter Notebooks. I use nbdev to turn these notebooks into modules.

Install

pip install fastpapers

How to use

Train DETR in 3 lines of code

Download the data

path = download_coco(force_download=False)

Create the DataLoaders, the Learner, and fit.

dls = CocoDataLoaders.from_sources(path, vocab=coco_vocab, num_workers=0)
learnd = detr_learner(dls)
learnd.fit(1, lr=[1e-5, 1e-5, 1e-5])
epoch train_loss valid_loss AP AP50 AP75 AP_small AP_medium AP_large AR1 AR10 AR100 AR_small AR_medium AR_large time
0 5.892842 7.636298 0.475381 0.574125 0.506063 0.297741 0.458006 0.560994 0.355018 0.545646 0.560374 0.375141 0.541728 0.630330 2:05:24

Show the results

with learnd.removed_cbs(learnd.coco_eval): learnd.show_results(max_n=8, figsize=(10,10))

png

Superresolution in 4 lines of code

Download the data

path = untar_data(URLs.IMAGENETTE)

Create the DataLoaders, the Learner adn fit.

#hide_output
db = DataBlock(blocks=(ResImageBlock(72), ResImageBlock(288)),
               get_items=get_image_files,
               batch_tfms=Normalize.from_stats([0.5]*3, [0.5]*3))
dls = db.dataloaders(path, bs=4, num_workers=4)
learn = superres_learner(dls)
learn.fit(16, lr=1e-3, wd=0)
learn.show_results()

png

Library structure

The name of each module is the bibtexkey of the corresponing paper. For example, if you want to use the FID metric from Heusel, Martin, et al. 2017, you can import it like so:

from fastpapers.heusel2017gans import FIDMetric

If you want to train a pix2pix model from Isola, Phillip, et al you can import a pix2pix_learner

from fastpapers.isola2017image import pix2pix_learner

The core module contains functions and classes that are useful for several papers. For example, you have a ImageNTuple to work with an arbitrary amount of images as input.

path = untar_data(URLs.PETS)
files = get_image_files(path/"images")
it = ImageNTuple.create((files[0], files[1], files[2]))
it = Resize(224)(it)
it = ToTensor()(it)
it.show();

png

Or useful functions for debuging like explode_shapes or explode_ranges

explode_shapes(it)
[(3, 224, 224), (3, 224, 224), (3, 224, 224)]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastpapers-0.0.8.tar.gz (28.6 kB view details)

Uploaded Source

Built Distribution

fastpapers-0.0.8-py3-none-any.whl (28.4 kB view details)

Uploaded Python 3

File details

Details for the file fastpapers-0.0.8.tar.gz.

File metadata

  • Download URL: fastpapers-0.0.8.tar.gz
  • Upload date:
  • Size: 28.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.2

File hashes

Hashes for fastpapers-0.0.8.tar.gz
Algorithm Hash digest
SHA256 f0a39c92482e6e1b30da6ff76a3757e4cba970a6615d7d81818f4e286052891f
MD5 487dc19fac3809118dab54e383ae1648
BLAKE2b-256 6206057e42be702a137aca416a218be8a33b066d719fef1b091cd4d6fac0cb66

See more details on using hashes here.

File details

Details for the file fastpapers-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: fastpapers-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 28.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.2

File hashes

Hashes for fastpapers-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 a0a7b2615e6aeacf615e5aea4150623040612ebe1f02fd385876e531814b06b4
MD5 c2687fdbb0706e76dffb59e327aac5d4
BLAKE2b-256 9cd0689a192bb0e0f2700d95faf72cae2fc7706db494dee3195eb719c51d7154

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page