Skip to main content

A nested progress with plotting options for fastai

Project description

fastprogress

A fast and simple progress bar for Jupyter Notebook and console. Created by Sylvain Gugger for fast.ai.

Copyright 2017 onwards, fast.ai. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Install

To install simply use

pip install fastprogress

or:

conda install -c fastai fastprogress 

Note that this requires python 3.6 or later.

Usage

Here is a simple example. Each bar takes a generator as a main argument, and we can specify the second bar is nested with the first by adding the argument parent=mb. We can then

  • add a comment in the first bar by changing the value of mb.first_bar.comment
  • add a comment in the first bar by changing the value of mb.child.comment
  • write a line between the two bars with mb.write('message')
from fastprogress import master_bar, progress_bar
from time import sleep
mb = master_bar(range(10))
for i in mb:
    for j in progress_bar(range(100), parent=mb):
        sleep(0.01)
        mb.child.comment = f'second bar stat'
    mb.first_bar.comment = f'first bar stat'
    mb.write(f'Finished loop {i}.')
    #mb.update_graph(graphs, x_bounds, y_bounds)

To add a graph that get plots as the training goes, just use the command mb.update_graphs. It will create the figure on its first use. Arguments are:

  • graphs: a list of graphs to be plotted (each of the form [x,y])
  • x_bounds: the min and max values of the x axis (if None, it will those given by the graphs)
  • y_bounds: the min and max values of the y axis (if None, it will those given by the graphs)

Note that it's best to specify x_bounds and _bounds otherwise the box will change as the loop progresses.

Additionally, we can give the label of each graph via the command mb.names (should have as many elements as the graphs argument).

import numpy as np
mb = master_bar(range(10))
mb.names = ['cos', 'sin']
for i in mb:
    for j in progress_bar(range(100), parent=mb):
        if j%10 == 0:
            k = 100 * i + j
            x = np.arange(0, 2*k*np.pi/1000, 0.01)
            y1, y2 = np.cos(x), np.sin(x)
            graphs = [[x,y1], [x,y2]]
            x_bounds = [0, 2*np.pi]
            y_bounds = [-1,1]
            mb.update_graph(graphs, x_bounds, y_bounds)
            mb.child.comment = f'second bar stat'
    mb.first_bar.comment = f'first bar stat'
    mb.write(f'Finished loop {i}.')

Here is the rendering in console:

If the script using this is executed with a redirect to a file, only the results of the .write method will be printed in that file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastprogress-0.1.10.tar.gz (5.1 kB view details)

Uploaded Source

Built Distribution

fastprogress-0.1.10-py3-none-any.whl (8.8 kB view details)

Uploaded Python 3

File details

Details for the file fastprogress-0.1.10.tar.gz.

File metadata

  • Download URL: fastprogress-0.1.10.tar.gz
  • Upload date:
  • Size: 5.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.6

File hashes

Hashes for fastprogress-0.1.10.tar.gz
Algorithm Hash digest
SHA256 e07a5465df2552f1c0629491f2177e65daad2f083c77ec99e8081e56cf757568
MD5 fd3e02e1e3b6bcdf19796d0872c9c82a
BLAKE2b-256 bbde2675f3726e00dc290eb69b8798db4ae382726adf9b28c0bf6cfd0b4aecc6

See more details on using hashes here.

File details

Details for the file fastprogress-0.1.10-py3-none-any.whl.

File metadata

  • Download URL: fastprogress-0.1.10-py3-none-any.whl
  • Upload date:
  • Size: 8.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.6

File hashes

Hashes for fastprogress-0.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 3203d54cdd0d55a58cc5f10089da9ca7df4b831062a7f6e71cc1db8c3db76b08
MD5 1fb5943e9b7661f222a70b5e317f31b5
BLAKE2b-256 ba78460d7032fdba5579b5e8945cefba8aed7bb730a13da3bcf92ebd61866281

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page