Skip to main content

A nested progress with plotting options for fastai

Project description

fastprogress

A fast and simple progress bar for Jupyter Notebook and console. Created by Sylvain Gugger for fast.ai.

Copyright 2017 onwards, fast.ai. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Install

To install simply use

pip install fastprogress

or:

conda install -c fastai fastprogress 

Note that this requires python 3.6 or later.

Usage

Here is a simple example. Each bar takes an iterator as a main argument, and we can specify the second bar is nested with the first by adding the argument parent=mb. We can then

  • add a comment in the first bar by changing the value of mb.first_bar.comment
  • add a comment in the first bar by changing the value of mb.child.comment
  • write a line between the two bars with mb.write('message')
from fastprogress import master_bar, progress_bar
from time import sleep
mb = master_bar(range(10))
for i in mb:
    for j in progress_bar(range(100), parent=mb):
        sleep(0.01)
        mb.child.comment = f'second bar stat'
    mb.first_bar.comment = f'first bar stat'
    mb.write(f'Finished loop {i}.')
    #mb.update_graph(graphs, x_bounds, y_bounds)

To add a graph that get plots as the training goes, just use the command mb.update_graphs. It will create the figure on its first use. Arguments are:

  • graphs: a list of graphs to be plotted (each of the form [x,y])
  • x_bounds: the min and max values of the x axis (if None, it will those given by the graphs)
  • y_bounds: the min and max values of the y axis (if None, it will those given by the graphs)

Note that it's best to specify x_bounds and _bounds otherwise the box will change as the loop progresses.

Additionally, we can give the label of each graph via the command mb.names (should have as many elements as the graphs argument).

import numpy as np
mb = master_bar(range(10))
mb.names = ['cos', 'sin']
for i in mb:
    for j in progress_bar(range(100), parent=mb):
        if j%10 == 0:
            k = 100 * i + j
            x = np.arange(0, 2*k*np.pi/1000, 0.01)
            y1, y2 = np.cos(x), np.sin(x)
            graphs = [[x,y1], [x,y2]]
            x_bounds = [0, 2*np.pi]
            y_bounds = [-1,1]
            mb.update_graph(graphs, x_bounds, y_bounds)
            mb.child.comment = f'second bar stat'
    mb.first_bar.comment = f'first bar stat'
    mb.write(f'Finished loop {i}.')

Here is the rendering in console:

If the script using this is executed with a redirect to a file, only the results of the .write method will be printed in that file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastprogress-0.1.15.tar.gz (5.7 kB view details)

Uploaded Source

Built Distribution

fastprogress-0.1.15-py3-none-any.whl (6.0 kB view details)

Uploaded Python 3

File details

Details for the file fastprogress-0.1.15.tar.gz.

File metadata

  • Download URL: fastprogress-0.1.15.tar.gz
  • Upload date:
  • Size: 5.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.5

File hashes

Hashes for fastprogress-0.1.15.tar.gz
Algorithm Hash digest
SHA256 ad98a7de73436cd2cdbd328f7ff5404957bf2e2666b5516d19cab2bdcf1704d3
MD5 3596b37d9f8a73755cdb4380ccf3e8e6
BLAKE2b-256 1e88e383ad6c18eb38c720bff83b3ab32cdbe0e1316fcd841463440dda2f4443

See more details on using hashes here.

File details

Details for the file fastprogress-0.1.15-py3-none-any.whl.

File metadata

  • Download URL: fastprogress-0.1.15-py3-none-any.whl
  • Upload date:
  • Size: 6.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.5

File hashes

Hashes for fastprogress-0.1.15-py3-none-any.whl
Algorithm Hash digest
SHA256 aa3d207060f8eb45f9253ba2b34bd777ce9907b6e72470c4ccba5d963d23c64c
MD5 bda8afade280a20dc79574f873f248d7
BLAKE2b-256 dcb87ce2b3c6f886f5cb1b16e62d368456b4fdb7e16bba962571bc50dae49b30

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page