Skip to main content

A nested progress with plotting options for fastai

Project description

fastprogress

A fast and simple progress bar for Jupyter Notebook and console. Created by Sylvain Gugger for fast.ai.

Copyright 2017 onwards, fast.ai. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Install

To install simply use

pip install fastprogress

or:

conda install fastprogress

Note that this requires python 3.6 or later.

Usage

Here is a simple example. Each bar takes a generator as a main argument, and we can specify the second bar is nested with the first by adding the argument parent=mb. We can then

  • add a comment in the first bar by changing the value of mb.first_bar.comment
  • add a comment in the first bar by changing the value of mb.child.comment
  • write a line between the two bars with mb.write('message')
from fastprogress import master_bar, progress_bar
from time import sleep
mb = master_bar(range(10))
for i in mb:
    for j in progress_bar(range(100), parent=mb):
        sleep(0.01)
        mb.child.comment = f'second bar stat'
    mb.first_bar.comment = f'first bar stat'
    mb.write(f'Finished loop {i}.')
    #mb.update_graph(graphs, x_bounds, y_bounds)

To add a graph that get plots as the training goes, just use the command mb.update_graphs. It will create the figure on its first use. Arguments are:

  • graphs: a list of graphs to be plotted (each of the form [x,y])
  • x_bounds: the min and max values of the x axis (if None, it will those given by the graphs)
  • y_bounds: the min and max values of the y axis (if None, it will those given by the graphs)

Note that it's best to specify x_bounds and _bounds otherwise the box will change as the loop progresses.

Additionally, we can give the label of each graph via the command mb.names (should have as many elements as the graphs argument).

import numpy as np
mb = master_bar(range(10))
mb.names = ['cos', 'sin']
for i in mb:
    for j in progress_bar(range(100), parent=mb):
        if j%10 == 0:
            k = 100 * i + j
            x = np.arange(0, 2*k*np.pi/1000, 0.01)
            y1, y2 = np.cos(x), np.sin(x)
            graphs = [[x,y1], [x,y2]]
            x_bounds = [0, 2*np.pi]
            y_bounds = [-1,1]
            mb.update_graph(graphs, x_bounds, y_bounds)
            mb.child.comment = f'second bar stat'
    mb.first_bar.comment = f'first bar stat'
    mb.write(f'Finished loop {i}.')

Here is the rendering in console:

If the script using this is executed with a redirect to a file, only the results of the .write method will be printed in that file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastprogress-0.1.8.tar.gz (4.8 kB view details)

Uploaded Source

Built Distribution

fastprogress-0.1.8-py3-none-any.whl (5.2 kB view details)

Uploaded Python 3

File details

Details for the file fastprogress-0.1.8.tar.gz.

File metadata

  • Download URL: fastprogress-0.1.8.tar.gz
  • Upload date:
  • Size: 4.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.6

File hashes

Hashes for fastprogress-0.1.8.tar.gz
Algorithm Hash digest
SHA256 d254334f523ae87398a3400fa51a2d4d4f0eb98587f14a786984b72498152a5b
MD5 09f90b0120123db3dc86f302890da17a
BLAKE2b-256 a9fcee2c7e2b062029fd9d15d5fce9b2fdb6e3fa0eba6e61802006aa1ce1e424

See more details on using hashes here.

File details

Details for the file fastprogress-0.1.8-py3-none-any.whl.

File metadata

  • Download URL: fastprogress-0.1.8-py3-none-any.whl
  • Upload date:
  • Size: 5.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.6

File hashes

Hashes for fastprogress-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 e5a0e75e89ef8d95ef0dd01c376b8373643afc0206263b5fac605ed267c2f484
MD5 4ffbff418837c5a39d89ce2c6dc76b17
BLAKE2b-256 7ef327f4f061dc6419b769fcdb575d706ca4d22de3fd99cd7a46815c9bd95811

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page