Skip to main content

A nested progress with plotting options for fastai

Project description

fastprogress

A fast and simple progress bar for Jupyter Notebook and console. Created by Sylvain Gugger for fast.ai.

Copyright 2017 onwards, fast.ai. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Install

To install simply use

pip install fastprogress

or:

conda install -c fastai fastprogress 

Note that this requires python 3.6 or later.

Usage

Here is a simple example. Each bar takes an iterator as a main argument, and we can specify the second bar is nested with the first by adding the argument parent=mb. We can then

  • add a comment in the first bar by changing the value of mb.first_bar.comment
  • add a comment in the first bar by changing the value of mb.child.comment
  • write a line between the two bars with mb.write('message')
from fastprogress import master_bar, progress_bar
from time import sleep
mb = master_bar(range(10))
for i in mb:
    for j in progress_bar(range(100), parent=mb):
        sleep(0.01)
        mb.child.comment = f'second bar stat'
    mb.first_bar.comment = f'first bar stat'
    mb.write(f'Finished loop {i}.')
    #mb.update_graph(graphs, x_bounds, y_bounds)

To add a graph that get plots as the training goes, just use the command mb.update_graphs. It will create the figure on its first use. Arguments are:

  • graphs: a list of graphs to be plotted (each of the form [x,y])
  • x_bounds: the min and max values of the x axis (if None, it will those given by the graphs)
  • y_bounds: the min and max values of the y axis (if None, it will those given by the graphs)

Note that it's best to specify x_bounds and _bounds otherwise the box will change as the loop progresses.

Additionally, we can give the label of each graph via the command mb.names (should have as many elements as the graphs argument).

import numpy as np
mb = master_bar(range(10))
mb.names = ['cos', 'sin']
for i in mb:
    for j in progress_bar(range(100), parent=mb):
        if j%10 == 0:
            k = 100 * i + j
            x = np.arange(0, 2*k*np.pi/1000, 0.01)
            y1, y2 = np.cos(x), np.sin(x)
            graphs = [[x,y1], [x,y2]]
            x_bounds = [0, 2*np.pi]
            y_bounds = [-1,1]
            mb.update_graph(graphs, x_bounds, y_bounds)
            mb.child.comment = f'second bar stat'
    mb.first_bar.comment = f'first bar stat'
    mb.write(f'Finished loop {i}.')

Here is the rendering in console:

If the script using this is executed with a redirect to a file, only the results of the .write method will be printed in that file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastprogress-0.2.0.tar.gz (7.9 kB view details)

Uploaded Source

Built Distribution

fastprogress-0.2.0-py3-none-any.whl (12.0 kB view details)

Uploaded Python 3

File details

Details for the file fastprogress-0.2.0.tar.gz.

File metadata

  • Download URL: fastprogress-0.2.0.tar.gz
  • Upload date:
  • Size: 7.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for fastprogress-0.2.0.tar.gz
Algorithm Hash digest
SHA256 c99f1c2ae84a6a66fd80b4247b26af0f10359f183567ff6e5a59bbf19b0427b5
MD5 e04691d045edcc2ba991e23aa9552509
BLAKE2b-256 52a346918af4683df4eaa9e69944df589775a53bd79e91c6f07be7868d9416f6

See more details on using hashes here.

File details

Details for the file fastprogress-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: fastprogress-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 12.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for fastprogress-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2a179e0d330656fe9d5e258fc75c816cd00b96a1cb1e662ef2567536aaa47ce9
MD5 1d53acb56da9f32aa114495141f503b9
BLAKE2b-256 1d9954a24c97d40b0e7a9e1c6a8103c8a807f7c22173a428f304b28aaec51f36

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page