Skip to main content

A nested progress with plotting options for fastai

Project description

fastprogress

A fast and simple progress bar for Jupyter Notebook and console. Created by Sylvain Gugger for fast.ai.

Install

To install simply use

pip install fastprogress

or:

conda install -c fastai fastprogress

Note that this requires python 3.6 or later.

Usage

Example 1

Here is a simple example. Each bar takes an iterator as a main argument, and we can specify the second bar is nested with the first by adding the argument parent=mb. We can then:

  • add a comment in the first bar by changing the value of mb.main_bar.comment
  • add a comment in the first bar by changing the value of mb.child.comment
  • write a line between the two bars with mb.write('message')
from fastprogress.fastprogress import master_bar, progress_bar
from time import sleep
mb = master_bar(range(10))
for i in mb:
    for j in progress_bar(range(100), parent=mb):
        sleep(0.01)
        mb.child.comment = f'second bar stat'
    mb.main_bar.comment = f'first bar stat'
    mb.write(f'Finished loop {i}.')
    #mb.update_graph(graphs, x_bounds, y_bounds)

Example 2

To add a graph that get plots as the training goes, just use the command mb.update_graphs. It will create the figure on its first use. Arguments are:

  • graphs: a list of graphs to be plotted (each of the form [x,y])
  • x_bounds: the min and max values of the x axis (if None, it will those given by the graphs)
  • y_bounds: the min and max values of the y axis (if None, it will those given by the graphs)

Note that it's best to specify x_bounds and y_bounds, otherwise the box will change as the loop progresses.

Additionally, we can give the label of each graph via the command mb.names (should have as many elements as the graphs argument).

import numpy as np
mb = master_bar(range(10))
mb.names = ['cos', 'sin']
for i in mb:
    for j in progress_bar(range(100), parent=mb):
        if j%10 == 0:
            k = 100 * i + j
            x = np.arange(0, 2*k*np.pi/1000, 0.01)
            y1, y2 = np.cos(x), np.sin(x)
            graphs = [[x,y1], [x,y2]]
            x_bounds = [0, 2*np.pi]
            y_bounds = [-1,1]
            mb.update_graph(graphs, x_bounds, y_bounds)
            mb.child.comment = f'second bar stat'
    mb.main_bar.comment = f'first bar stat'
    mb.write(f'Finished loop {i}.')

Here is the rendering in console:

If the script using this is executed with a redirect to a file, only the results of the .write method will be printed in that file.

Example 3

Here is an example that a typical machine learning training loop can use. It also demonstrates how to set y_bounds dynamically.

def plot_loss_update(epoch, epochs, mb, train_loss, valid_loss):
    """ dynamically print the loss plot during the training/validation loop.
        expects epoch to start from 1.
    """
    x = range(1, epoch+1)
    y = np.concatenate((train_loss, valid_loss))
    graphs = [[x,train_loss], [x,valid_loss]]
    x_margin = 0.2
    y_margin = 0.05
    x_bounds = [1-x_margin, epochs+x_margin]
    y_bounds = [np.min(y)-y_margin, np.max(y)+y_margin]

    mb.update_graph(graphs, x_bounds, y_bounds)

And here is an emulation of a training loop that uses this function:

from fastprogress.fastprogress import master_bar, progress_bar
from time import sleep
import numpy as np
import random

epochs = 5
mb = master_bar(range(1, epochs+1))
# optional: graph legend: if not set, the default is 'train'/'valid'
# mb.names = ['first', 'second']
train_loss, valid_loss = [], []
for epoch in mb:
    # emulate train sub-loop
    for batch in progress_bar(range(2), parent=mb): sleep(0.2)
    train_loss.append(0.5 - 0.06 * epoch + random.uniform(0, 0.04))

    # emulate validation sub-loop
    for batch in progress_bar(range(2), parent=mb): sleep(0.2)
    valid_loss.append(0.5 - 0.03 * epoch + random.uniform(0, 0.04))

    plot_loss_update(epoch, epochs, mb, train_loss, valid_loss)

And the output:

Output

Copyright 2017 onwards, fast.ai. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastprogress-1.0.2.tar.gz (14.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

fastprogress-1.0.2-py3-none-any.whl (12.7 kB view details)

Uploaded Python 3

File details

Details for the file fastprogress-1.0.2.tar.gz.

File metadata

  • Download URL: fastprogress-1.0.2.tar.gz
  • Upload date:
  • Size: 14.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.6 tqdm/4.61.2 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.5

File hashes

Hashes for fastprogress-1.0.2.tar.gz
Algorithm Hash digest
SHA256 9606ba442505a3a44581d63deddce5bff1df17acbdc37252f7c3f1be52c1d243
MD5 70690dbaa8c9f733e0c1dd2ce8110b6b
BLAKE2b-256 49de5a81ff88d089e7f835ed05e5779c8eed6cd46b8cb1c340e8643d79d30fd4

See more details on using hashes here.

File details

Details for the file fastprogress-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: fastprogress-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 12.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.25.1 requests-toolbelt/0.9.1 urllib3/1.26.6 tqdm/4.61.2 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.5

File hashes

Hashes for fastprogress-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d00ca857e2e651b08cb4c28f5800e5330d47d2cc50dcc8e0251fa01763c59049
MD5 6ad0808c7396633d8492415fcb143d5f
BLAKE2b-256 efd3262caecee633b249afe561722ecad6e51769b4a5c93bfbc912b80db9a5d6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page