Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

LLVM JIT compiler as a function decorator

Project description

fastpy

https://img.shields.io/pypi/v/fastpy.svg https://img.shields.io/travis/tartavull/fastpy.svg Documentation Status Updates

Python made fast. Decorate your functions with @fast, we will infered the types you used, compile to machine code, and execute.

Biased test showing how fast fastpy is:

Initial code:

def long_loop(a):
  for i in range(100000):
    for j in range(10000):
      a += 1
return a
print long_loop(0)
$ time python loop.py
1000000000
python test.py  39.24s user 0.01s system 99% cpu 39.420 total
$ time pypy loop.py
1000000000
pypy test.py  0.92s user 0.01s system 99% cpu 0.937 total

Now we modify the code to use fastpy

from fastpy import fast

@fast
def long_loop(a):
  for i in range(100000):
    for j in range(10000):
      a += 1
  return a
print long_loop(0)
$  time python loop.py
1000000000
python test.py  0.11s user 0.00s system 99% cpu 0.117 total

Credits

Based on this tutorial http://dev.stephendiehl.com/numpile/

History

0.1.0 (2016-07-09)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for fastpy, version 0.1.1
Filename, size File type Python version Upload date Hashes
Filename, size fastpy-0.1.1-py2.7.egg (36.8 kB) File type Egg Python version 2.7 Upload date Hashes View hashes
Filename, size fastpy-0.1.1-py2.py3-none-any.whl (17.1 kB) File type Wheel Python version py2.py3 Upload date Hashes View hashes
Filename, size fastpy-0.1.1.tar.gz (23.0 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page