Skip to main content

A fine-tuned state estimator for power system.

Project description

🚀FastSE

PyPI pyversions PyPI version fury.io Downloads PyPI license

A collection of power system computation modules

sparse matrix + aot/jit + klu + custom improved ordering + python = efficiency in computation and development!

🌟Features

Installation

To install, simply run pip install fastSE in your command prompt.

How to use

Here is one simple example. solve_se_lm is a high-level function which computes derivatives, assemble them as sparse matrix and then calculate the estimates using sparse matrix solver. All the low-level functions could also be imported and used individually.

from fastse import StateEstimator, StateEstimationInput
from fastse import bdd_validation
from scipy.sparse import csr_matrix
import numpy as np

import time
# A 5 bus example from Prof. Overbye's textbook
# node impedance
Ybus = np.array([[3.729 - 49.720j, 0.000 + 0.000j, 0.000 + 0.000j,
        0.000 + 0.000j, -3.729 + 49.720j],
       [0.000 + 0.000j, 2.678 - 28.459j, 0.000 + 0.000j,
        -0.893 + 9.920j, -1.786 + 19.839j],
       [0.000 + 0.000j, 0.000 + 0.000j, 7.458 - 99.441j,
        -7.458 + 99.441j, 0.000 + 0.000j],
       [0.000 + 0.000j, -0.893 + 9.920j, -7.458 + 99.441j,
        11.922 - 147.959j, -3.571 + 39.679j],
       [-3.729 + 49.720j, -1.786 + 19.839j, 0.000 + 0.000j,
        -3.571 + 39.679j, 9.086 - 108.578j]])
Ybus = csr_matrix(Ybus)

# branch impedance
Yf = np.array([[ 3.729-49.720j,  0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j,
    -3.729+49.720j],
   [ 0.000 +0.000j, -0.893 +9.920j,  0.000 +0.000j,  0.893 -9.060j,
     0.000 +0.000j],
   [ 0.000 +0.000j, -1.786+19.839j,  0.000 +0.000j,  0.000 +0.000j,
     1.786-19.399j],
   [ 0.000 +0.000j,  0.000 +0.000j,  7.458-99.441j, -7.458+99.441j,
     0.000 +0.000j],
   [ 0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j, -3.571+39.679j,
     3.571-39.459j]])
Yf = csr_matrix(Yf)

Yt = np.array([[-3.729+49.720j,  0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j,
     3.729-49.720j],
   [ 0.000 +0.000j,  0.893 -9.060j,  0.000 +0.000j, -0.893 +9.920j,
     0.000 +0.000j],
   [ 0.000 +0.000j,  1.786-19.399j,  0.000 +0.000j,  0.000 +0.000j,
    -1.786+19.839j],
   [ 0.000 +0.000j,  0.000 +0.000j, -7.458+99.441j,  7.458-99.441j,
     0.000 +0.000j],
   [ 0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j,  3.571-39.459j,
    -3.571+39.679j]])
Yt = csr_matrix(Yt)

# branch from and to bus
f = np.array([0, 3, 4, 2, 4])
t = np.array([4, 1, 1, 3, 3])

# slack, pv and pq buses
slack = np.array([0])  # The slack bus does not have to be the 0-indexed bus
pq = np.array([1, 3, 4])
pv = np.array([2])

# measurements
se_input = StateEstimationInput()

se_input.p_inj = np.array([ 3.948e+00, -8.000e+00,  4.400e+00, -6.507e-06, -1.407e-05])
se_input.p_inj_idx = np.arange(len(se_input.p_inj))
se_input.p_inj_weight = np.full(len(se_input.p_inj), 0.01)

se_input.q_inj = np.array([ 1.143e+00, -2.800e+00,  2.975e+00,  6.242e-07,  1.957e-06])
se_input.q_inj_idx = np.arange(len(se_input.q_inj))
se_input.q_inj_weight = np.full(len(se_input.q_inj), 0.01)

se_input.vm_m = np.array([0.834, 1.019, 0.974])
se_input.vm_m_idx = pq
se_input.vm_m_weight = np.full(len(se_input.vm_m), 0.01)

# First time will be slow due to compilation
start = time.time()
estimator = StateEstimator()
v_sol, err, converged, results = estimator.solve_se_lm(se_input, Ybus, Yf, Yt, f, t, slack, pq, pv, flat=True)
print("compilation + execution time:", time.time() - start)
bdd_validation(results, m=len(se_input.measurements), n=Ybus.shape[0] + len(pq) + len(pv))

# But then it will be very performant
start = time.time()
v_sol, err, converged, results = estimator.solve_se_lm(se_input, Ybus, Yf, Yt, f, t, slack, pq, pv, flat=True)
print("Execution time:", time.time() - start)

# Start from previous solution (set flat = False)
start = time.time()
v_sol, err, converged, results = estimator.solve_se_lm(se_input, Ybus, Yf, Yt, f, t, slack, pq, pv, flat=False)
print("Execution time:", time.time() - start)

# False data injection
se_input.vm_m[1] -= 0.025
se_input.vm_m[2] += 0.025
v_sol, err, converged, results = estimator.solve_se_lm(se_input, Ybus, Yf, Yt, f, t, slack, pq, pv)
print("-------------After False Data Injection-------------")
bdd_validation(results, m=len(se_input.measurements), n=Ybus.shape[0] + len(pq) + len(pv))

References

Temperature Dependent Power Flow (Temperature Dependent Load Flow)

S. Frank, J. Sexauer and S. Mohagheghi, "Temperature-Dependent Power Flow," in IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4007-4018, Nov. 2013, doi: 10.1109/TPWRS.2013.2266409.

Rahman, Mahbubur et al. “Power handling capabilities of transmission systems using a temperature-dependent power flow.” Electric Power Systems Research (2019): n. pag.

Acknowledge

This work was supported by the U.S. Department of Energy (DOE) under award DE-OE0000895 and the Sandia National Laboratories’ directed R&D project #222444.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastSE-0.3.2.tar.gz (232.2 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page