Efficient implementations of sequence models with fast performance
Project description
FastSeq
Introduction
FastSeq provides efficient implementations of the popular sequence models with high performance for text generation, summarization, and translation tasks. It can automatically optimize the performance of the pupular NLP toolkits (e.g. FairSeq) by simply import fastseq
.
Supported Models
Supported models in fairseq
- ProphetNet
- BART
- Scaling Neural Machine Translation (Ott et al., 2018)
- Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)
- Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)
Supported models in HuggingFace-Transformers
Benchmarks
ProphetNet
-
CNN daily mail val data, NVIDIA-V100-16GB
BatchSize 32 64 128 prophetnet 2.7 samples/s 3.1 samples/s OOM prophetnet + fastseq 5.5 samples/s 8.4 samples/s 10.3 samples/s
with setting:
$ fastseq-generate-for-fairseq \
cnn_dm_bert.1k/len-1024.bin \
--path prophetnet/model.pt \
--fp16 \
--task translation_prophetnet \
--batch-size BATCH_SIZE \
--beam 4 \
--num-workers 4 \
--min-len 55 \
--max-len-b 140 \
--no-repeat-ngram-size 3 \
--lenpen 2.0 \
--remove-bpe \
--gen-subset valid \
BART from Fairseq
-
CNN daily mail val data, NVIDIA-V100-16GB
BatchSize 32 64 128 fairseq-0.9.0 2.7 samples/s OOM OOM above + fastseq 9.0 samples/s 12.5 samples/s 14.5 samples/s
with setting:
$ fastseq-generate-for-fairseq \
cnn_dm.1k/len-1024.bin \
--path bart.large.cnn/model.pt \
--fp16 \
--task translation \
--batch-size BATCH_SIZE \
--gen-subset valid \
--truncate-source \
--bpe gpt2 \
--beam 4 \
--num-workers 4 \
--min-len 55 \
--max-len-b 140 \
--no-repeat-ngram-size 3 \
--lenpen 2.0
To get the baseline fairseq's speed number, replace fastseq-generate-for-fairseq
by fairseq-generate
.
BART from Transformers
-
CNN daily mail val data, NVIDIA-V100-16GB
BatchSize 32 64 128 transformers-3.0.2 3.4 samples/s OOM OOM above + fastseq 5.2 samples/s 6.2 samples/s 6.4 samples/s transformers-2.11.0 2.5 samples/s OOM OOM above + fastseq 4.4 samples/s 5.3 samples/s >5.3 samples/s
(numbers for 2.11.0 needs to be updated based on docker env.)
with setting:
$ fastseq-generate-for-transformers \
facebook/bart-large-cnn \
cnn_dm.1k/val.source \
out.summary \
--reference_path cnn_dm/val.target \
--device cuda \
--bs 128 \
--fp16 \
--score_path out.score \
--task summarization
To get the baseline transformers' speed number, we can either add option --without_fastseq_opt
or use tool provided in Transformers GitHub repository.
WMT from Fairseq
-
WMT16 En-De model
BatchSize 256 512 1024 fairseq-0.9.0 84 samples/s OOM OOM above + fastseq 129 samples/s 131 samples/s 135 samples/s
with setting:
$ fastseq-generate-for-fairseq \
wmt14.en-fr.joined-dict.newstest2014/ \
--path wmt14.en-fr.joined-dict.transformer/model.pt \
--beam 4 \
--lenpen 0.6 \
--remove-bpe \
--batch-size 32
To get the fairseq's speed number, replace fastseq-generate-for-fairseq
by fairseq-generate
.
Installation
Requirements
- Python version >= 3.6
- torch >= 1.4.0
- fairseq >= 0.9.0
- transformers >= 3.0.2
- requets >= 2.24.0
- absl-py >= 0.9.0
- rouge-score
If you use fairseq or transformers, you only need to install one of them. If you use both, you need to install both.
Python package
fastseq
Python package can be directly installed with pip using
$ pip install fastseq
Install from the source
$ git clone https://github.com/microsoft/fastseq
$ cd fastseq
$ pip install --editable ./
Usage
Example
Only one line of code change is needed to use the optimizations provided by FastSeq
.
# import fastseq at the beginning of your program
import fastseq
import torch
# Download bart.large.cnn
bart = torch.hub.load('pytorch/fairseq', 'bart.large.cnn')
bart.cuda() # use GPU
bart.eval() # disable dropout for evaluation
bart.half()
slines = ['FastSeq provides efficient implementations of the popular sequence models. Please visit https://github.com/microsoft/fastseq for more details.']
hypotheses = bart.sample(
slines, beam=4, lenpen=2.0, max_len_b=140, min_len=55, no_repeat_ngram_size=3)
print(hypotheses)
Command line tool for fairseq models
Example
$ fastseq-generate-for-fairseq \
cnn_dnn/bin \
--path bart.large.cnn/model.pt \
--fp16 \
--task translation \
--batch-size 128 \
--gen-subset valid \
--truncate-source \
--bpe gpt2 \
--beam 4 \
--num-workers 4 \
--min-len 55 \
--max-len-b 140 \
--no-repeat-ngram-size 3 \
--lenpen 2.0
Command line tool for transformers models
Example
$ fastseq-generate-for-transformers \
facebook/bart-large-cnn \
cnn_dm/val.source \
out.summary \
--reference_path cnn_dm/val.target \
--device cuda \
--bs 128 \
--fp16 \
--score_path out.score \
--task summarization
Run tests
# run a single test.
$ python tests/optimizer/fairseq/test_fairseq_optimizer.py
# run benchmark.
$ python tests/optimizer/fairseq/benchmark_fairseq_optimizer.py
# run all the tests.
$ python -m unittest discover -s tests/ -p '*.py'
# run all the benchmarks.
$ cd benchmarks && bash run_all_benchmarks.sh
Build
# build package
$ python setup.py sdist bdist_wheel
Code Style
Python coding style
Changes to Python code should conform to PEP 8. yapf
can be used to help format the python code, and use pylint
to check your Python changes.
# format the code by yapf
$ yapf --style pep8 -i -r PYTHON_FILE/PACKAGE
# run pylint check
$ pylint --rcfile=.pylintrc PYTHON_FILE/PACKAGE
Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file fastseq-0.0.3.tar.gz
.
File metadata
- Download URL: fastseq-0.0.3.tar.gz
- Upload date:
- Size: 64.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e1d0c9e97e01750a0d23ed46d866e0b6174a6a3e34fbbbd3de1d25465b4d362c |
|
MD5 | c9a2366f5a94fdec0eb5d9111a09c8af |
|
BLAKE2b-256 | 3b54af32fac50f6c3f85fd67b455c98facc6f2f5fe404466a95a7939b7cb5b28 |
File details
Details for the file fastseq-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: fastseq-0.0.3-py3-none-any.whl
- Upload date:
- Size: 75.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0ad5ba8945a651c60b1921b083c9028d2a6eb58038fd097d836e2f7f6768776c |
|
MD5 | fd290c073fc85a2d90995e4f8fabadf7 |
|
BLAKE2b-256 | 4e02f2e05af51e1fdf197c778cd3dac3f957f0391f09ded3f871ff774a386abe |