Skip to main content

Targetted language identifier, based on FastText and Hunspell.

Project description

FastSpell

PyPI - Python Version GitHub Workflow Status

Targetted language identifier, based on FastText and Hunspell.

How it works

FastSpell will try to determine the language of a sentence by using FastText.

If the language detected is very similar to the target language (i.e. FastText detected Spanish, while the targetted language is Galician), extra checks are performed with Hunspell to determine the language more precisely.

Citation

If you find FastSpell useful, please consider citing the following paper:

Marta Bañón, Gema Ramírez-Sánchez, Jaume Zaragoza-Bernabeu, and Sergio Ortiz Rojas,
"FastSpell: The LangId Magic Spell",
in Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024),
pages 7133–7140, Torino, Italia. ELRA and ICCL.

@inproceedings{banon-etal-2024-fastspell-langid,
    title = "{F}ast{S}pell: The {L}ang{I}d Magic Spell",
    author = "Ba{\~n}{\'o}n, Marta  and
      Ram{\'\i}rez-S{\'a}nchez, Gema  and
      Zaragoza-Bernabeu, Jaume  and
      Ortiz Rojas, Sergio",
    editor = "Calzolari, Nicoletta  and
      Kan, Min-Yen  and
      Hoste, Veronique  and
      Lenci, Alessandro  and
      Sakti, Sakriani  and
      Xue, Nianwen",
    booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
    month = may,
    year = "2024",
    address = "Torino, Italia",
    publisher = "ELRA and ICCL",
    url = "https://aclanthology.org/2024.lrec-main.626",
    pages = "7133--7140",
    abstract = "Language identification is a crucial component in the automated production of language resources, particularly in multilingual and big data contexts. However, commonly used language identifiers struggle to differentiate between similar or closely-related languages. This paper introduces FastSpell, a language identifier that combines fastText (a pre-trained language identifier tool) and Hunspell (a spell checker) with the aim of having a refined second-opinion before deciding which language should be assigned to a text. We provide a description of the FastSpell algorithm along with an explanation on how to use and configure it. To that end, we motivate the need of such a tool and present a benchmark including some popular language identifiers evaluated during the development of FastSpell. We show how FastSpell is useful not only to improve identification of similar languages, but also to identify new ones ignored by other tools.",
}

Requirements & Installation

FastSpell can be installed from PyPI

pip install fastspell

or directly from source:

pip install .

Note that it requires Python3.8 or higher, and the python3-dev package:

sudo apt-get install python3-dev

IMPORTANT: In some cases (for example, when using Python 3.10), the cyhunspell version 2.0.2 installation will fail. If that's the case, you need to install cyhunspell==2.0.3 before installing fastspell:

First make sure build dependencies are installed

sudo apt install build-essential autoconf autopoint libtool

then install the pip package

pip install git+https://github.com/MSeal/cython_hunspell@2.0.3

Model download

To trigger the FastText model download before running fastspell, run:

fastspell-download

Since version 0.7 all the dictionaries are installed automatically with pip and there is no need to do anything else. For further explanation about how configuration works, see below.

Conda

Also, you can install the conda package:

conda install -c conda-forge -c bitextor fastspell

Automatic testing

Some automatic tests are provided to check that the installation went fine. In order to check it, go to the /tests directory and run:

python3 -m unittest discover

You might need to istall the unittest package with pip, in case you don't have it installed beforehand.

Configuration

A few configuration files are provided under the fastspell/config directory. If you need to change default configuration, you can provide the path to your config directory with -c/--config or with the environment variable FASTSPELL_CONFIG.

similar.yaml

In this dictionary-like file, similar languages are stored. These are the languages that are going to be "double-checked" with Hunspell after being identified with FastText. For example, see the line gl: [es, pt, gl] . This means that, when the targetted language is Galician, and FastText identifies a given sentence as Spanish, Portuguese or Galician, extra checks will be performed with Hunspell to confirm which of the three similar languages is more suitable for the sentence.

Please note that you need Hunspell dictionaries for all the languages in this file (if you use the fastspell-download command, there is nothing else to do). This file can be modified to remove a language you are not interested in, or a language for which you don't have Hunspell dictionaries, or to add new similar or target languages.

hunspell.yaml

In this file, the names of the dictionaries are stored. All similar languages must be in this list in order to properly work.

For example, the first entry in the hunspell_codes is ca: ca_ES, and the dictionary path is ~/.local/share/fastspell/. That means that the Hunspell files for Catalan are ~/.local/share/fastspell/ca_ES.dic and ~/.local/share/fastspell/ca_ES.aff.

By default dicpath is empty, which means FastSpell will look in these directories for the dictionaries:

fastspell_dictionaries.__path__[0]
~/.local/share/fastspell
~/.local/share/hunspell
$VIRTUAL_ENV/share/hunspell
/usr/share/hunspell

To use a custom path, put it in dicpath and will be the first one to search.

Usage

Module:

In order to use FastSpell as a Python module, just install and import it :

from fastspell import FastSpell

Build a FastSpell object, like:

fsobj = FastSpell.FastSpell("en", mode="cons")

(learn more about modes in the section below)

And then use the getlang function with the sentences you want to identify, for example:

fsobj.getlang("Hello, world")
#'en'
fsobj.getlang("Hola, mundo")
#'es'

CLI:

iusage: fastspell [-h] [--aggr] [--cons] [--hbs] [-q] [--debug]
                 [--logfile LOGFILE] [-v]
                 lang [input] [output]

positional arguments:
  lang
  input              Input sentences. (default: <_io.TextIOWrapper
                     name='<stdin>' encoding='UTF-8'>)
  output             Output of the language identification. (default:
                     <_io.TextIOWrapper name='<stdout>' mode='w'
                     encoding='UTF-8'>)

optional arguments:
  -h, --help         show this help message and exit
  --aggr             Aggressive strategy (more positives) (default: False)
  --cons             Conservative strategy (less positives) (default: False)
  --hbs              Return all Serbo-Croatian variants as 'hbs' (default:
                     False)

Logging:
  -q, --quiet        Silent logging mode (default: False)
  --debug            Debug logging mode (default: False)
  --logfile LOGFILE  Store log to a file (default: <_io.TextIOWrapper
                     name='<stderr>' mode='w' encoding='UTF-8'>)
  -v, --version      show version of this script and exit

Aggressive vs Conservative

FastSpell comes in two flavours: Aggressive and Conservative.

The Aggressive mode is less hesitant to tag a sentence with the target language, and never has doubts. The Conservative version, on the other hand, is more reluctant to tag a sentence with the target language and will use the unk(unknown) tag in case of doubt (when there is a tie between the target language and other language, for example)

Benchmark

Benchmark data: https://github.com/mbanon/benchmarks

Results: https://docs.google.com/spreadsheets/d/158ZRWMgRH5TptlFWpKyh5uRL5jTkKW1d4KGJg1AZf7A/edit?usp=sharing

Usage example

Input text:

19-01-2011 47 comentarios 7o Xornadas de Xardinería de Galicia (RE)PLANTEAR
• Proceso de valoración de idoneidade: entrevistas psicosociais e visita domiciliaria e aplicación de test psicolóxicos, se é o caso.
- Chrome e Firefox en MacOS non son compatibles (unicamente Safari é compatible con MacOS), pero invocarase PSAL ao intentar empregar Chrome ou Firefox.
Mago da luz / Maga da luz
Celebrada a homenaxe a Xosé Manuel Seivane Rivas
A instalación eléctrica en teletraballo
Saltar á navegación Navegación INICIO
Julio Freire, competidor da FGA, invitado polo Kennel club de Inglaterra, para participar nos Crufts 2014 (Birmingham, 6 - 9 de marzo).
25 de xullo - Truong Tan Sang toma posesión como presidente de Vietnam
Quen pode solicitar o dito financiamento?

Command:

fastspell  --aggr lang inputtext
fastspell  --cons lang inputtext

Aggressive output:

19-01-2011 47 comentarios 7o Xornadas de Xardinería de Galicia (RE)PLANTEAR     gl
• Proceso de valoración de idoneidade: entrevistas psicosociais e visita domiciliaria e aplicación de test psicolóxicos, se é o caso.   gl
- Chrome e Firefox en MacOS non son compatibles (unicamente Safari é compatible con MacOS), pero invocarase PSAL ao intentar empregar Chrome ou Firefox.        gl
Mago da luz / Maga da luz       gl
Celebrada a homenaxe a Xosé Manuel Seivane Rivas        gl
A instalación eléctrica en teletraballo gl
Saltar á navegación Navegación INICIO   gl
Julio Freire, competidor da FGA, invitado polo Kennel club de Inglaterra, para participar nos Crufts 2014 (Birmingham, 6 - 9 de marzo). es
25 de xullo - Truong Tan Sang toma posesión como presidente de Vietnam  gl
Quen pode solicitar o dito financiamento?       gl

Conservative output:

19-01-2011 47 comentarios 7o Xornadas de Xardinería de Galicia (RE)PLANTEAR     unk
• Proceso de valoración de idoneidade: entrevistas psicosociais e visita domiciliaria e aplicación de test psicolóxicos, se é o caso.   gl
- Chrome e Firefox en MacOS non son compatibles (unicamente Safari é compatible con MacOS), pero invocarase PSAL ao intentar empregar Chrome ou Firefox.        gl
Mago da luz / Maga da luz       unk
Celebrada a homenaxe a Xosé Manuel Seivane Rivas        gl
A instalación eléctrica en teletraballo unk
Saltar á navegación Navegación INICIO   gl
Julio Freire, competidor da FGA, invitado polo Kennel club de Inglaterra, para participar nos Crufts 2014 (Birmingham, 6 - 9 de marzo). es
25 de xullo - Truong Tan Sang toma posesión como presidente de Vietnam  gl
Quen pode solicitar o dito financiamento?       gl

Getting stats:

cat inputtext | fastspell --aggr $L | cut -f2 | sort | uniq -c | sort -nr
cat inputtext | fastspell --cons $L | cut -f2 | sort | uniq -c | sort -nr

Aggressive:

9 gl
1 es

Conservative:

6 gl
3 unk
1 es

Connecting Europe Facility

All documents and software contained in this repository reflect only the authors' view. The Innovation and Networks Executive Agency of the European Union is not responsible for any use that may be made of the information it contains.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastspell-0.12.tar.gz (56.4 kB view details)

Uploaded Source

Built Distribution

fastspell-0.12-py3-none-any.whl (40.9 kB view details)

Uploaded Python 3

File details

Details for the file fastspell-0.12.tar.gz.

File metadata

  • Download URL: fastspell-0.12.tar.gz
  • Upload date:
  • Size: 56.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for fastspell-0.12.tar.gz
Algorithm Hash digest
SHA256 89002a27275e734766e1f1ce4703efcafe45d969277a7e28593a73b0f249f0db
MD5 de85a063a7825601c955cb6bcb656c49
BLAKE2b-256 6c0b68ab0c637a5dc9b556655b1c59e3f2869029e998236e017b9a1d8438552f

See more details on using hashes here.

File details

Details for the file fastspell-0.12-py3-none-any.whl.

File metadata

  • Download URL: fastspell-0.12-py3-none-any.whl
  • Upload date:
  • Size: 40.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for fastspell-0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 81c85cc74823e79cd5b66ca22e11a0f65308ef33ed2dd807a8dd55ff919be1d1
MD5 c0886ffbff8590b6421a937e14eda97e
BLAKE2b-256 e0acb7ecf5efffdb15dbb8c7590b2c28cf9be254b505aff8be89d9a767e01491

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page