Skip to main content

FastTENET

Project description

Drawing

Indroduction

  • FastTENET is an accelerated TENET algorithm based on manycore computing.

Installation

  • :snake: Anaconda is recommended to use and develop FastTENET.
  • :penguin: Linux distros are tested and recommended to use and develop FastTENET.

Anaconda virtual environment

After installing anaconda, create a conda virtual environment for FastTENET. In the following command, you can change the Python version (e.g.,python=3.7 or python=3.9).

conda create -n fasttenet python=3.9

Now, we can activate our virtual environment for FastTENET as follows.

conda activate fasttenet

Install from PyPi

pip install fasttenet
  • Default backend framework of the FastTENET is PyTorch Lightning.
  • You need to install other backend frameworks such as CuPy, Jax, and TensorFlow

Install from GitHub repository

First, clone the recent version of this repository.

git clone https://github.com/cxinsys/fasttenet.git

Now, we need to install FastTENET as a module.

cd fasttenet
pip install -e .
  • Default backend framework of the FastTENET is PyTorch Lightning.

Install backend frameworks

FastTENET supports several backend frameworks including CuPy, JAX, TensorFlow, PyTorch and PyTorch-Lightning.
To use frameworks, you need to install the framework manually


  • PyTorch Lightning

PyTorch Lightning is a required dependency library for FastTENET and is installed automatically when you install FastTENET.
If the library is not installed, you can install it manually via pip.

python -m pip install lightning

PyTorch is a required dependency library for FastTENET and is installed automatically when you install FastTENET.
If the library is not installed, you can install it manually.

conda install pytorch torchvision torchaudio pytorch-cuda=xx.x -c pytorch -c nvidia (check your CUDA version)

Install Cupy from Conda-Forge with cudatoolkit supported by your driver

conda install -c conda-forge cupy cuda-version=xx.x (check your CUDA version)

Install JAX with CUDA > 12.x

pip install -U "jax[cuda12]"

Use 'XLA_PYTHON_CLIENT_PREALLOCATE=false' to disables the preallocation behavior
(https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html)


Install TensorFlow-GPU with CUDA

python3 -m pip install tensorflow[and-cuda]

Tutorial

FastTENET class

Create FastTENET instance

FastTENET class requires data path as parameter

parameters

  • dpath_exp_data: expression data path, required
  • dpath_trj_data: trajectory data path, required
  • dpath_branch_data: branch(cell select) data path, required
  • dpath_tf_data: tf data path, required
  • spath_result_matrix: result matrix data path, optional, default: None
  • make_binary: if True, make binary expression and node name file, optional, default: False
import fasttenet as fte

worker = fte.FastTENET(dpath_exp_data=dpath_exp_data,
                           dpath_trj_data=dpath_trj_data,
                           dpath_branch_data=dpath_branch_data,
                           dpath_tf_data=dpath_tf_data,
                           spath_result_matrix=spath_result_matrix,
                           make_binary=True)

Run FastTENET

parameters

  • backend: optional, default: 'cpu'
  • device_ids: list or number of devcies to use, optional, default: [0] (cpu), [list of whole gpu devices] (gpu)
  • procs_per_device: The number of processes to create per device when using non 'cpu' devices, optional, default: 1
  • batch_size: Required
  • kp: kernel percentile, optional, default: 0.5
  • binning_method: discretization method for expression values, optional, 'FSBW-L' is recommended to achieve results similar to TENET.
result_matrix = worker.run(backend='gpu',
                                device_ids=8,
                                procs_per_device=4,
                                batch_size=2 ** 16,
                                kp=0.5,
                                binning_method='FSBW-L',
                                )

Run FastTENET with YAML config file

  • Before run tutorial_config.py, batch_size parameter must be modified to fit your gpu memory size
  • You can set parameters and run FastTENET via a YAML file
  • The config file must have values set for all required parameters

Usage

python tutorial_config.py --config [config file path]

Example

python tutorial_config.py --config ../configs/config_tuck_sub.yml

Output

TE_result_matrix.txt

Run FastTENET with tutorial_notf.py

  • Before run tutorial_notf.py, batch_size parameter must be modified to fit your gpu memory size

Usage

python tutorial_notf.py --fp_exp [expression file path] 
                        --fp_trj [trajectory file path] 
                        --fp_br [cell select file path] 
                        --backend [name of backend framework]
                        --num_devices [number of devices]
                        --batch_size [batch size]
                        --sp_rm [save file path]

Example

python tutorial_notf.py --fp_exp expression_dataTuck.csv 
                        --fp_trj pseudotimeTuck.txt 
                        --fp_br cell_selectTuck.txt 
                        --backend lightning
                        --num_devices 8
                        --batch_size 32768
                        --sp_rm TE_result_matrix.txt

Output

TE_result_matrix.txt

Run FastTENET with tutorial_tf.py

  • Before run tutorial_tf.py, batch_size parameter must be modified to fit your gpu memory size

Usage

python tutorial_tf.py --fp_exp [expression file path] 
                      --fp_trj [trajectory file path] 
                      --fp_br [cell select file path] 
                      --fp_tf [tf file path] 
                      --backend [name of backend framework]
                      --num_devices [number of devices]
                      --batch_size [batch size]
                      --sp_rm [save file path]

Example

python tutorial_tf.py --fp_exp expression_dataTuck.csv 
                      --fp_trj pseudotimeTuck.txt 
                      --fp_br cell_selectTuck.txt 
                      --fp_tf mouse_tfs.txt 
                      --backend lightning
                      --num_devices 8
                      --batch_size 32768
                      --sp_rm TE_result_matrix.txt

Output

TE_result_matrix.txt

Run make_grn.py

parameters

  • fp_rm: result matrix, required
  • fp_tf: tf list file, optional
  • fdr: specifying fdr, optional, default: 0.01
  • t_degrees: specifying number of outdegrees, optional, generate final GRNs by incrementally increasing the fdr
    value until the total number of outdegrees is greater than the parameter value.
  • trim_threshold: trimming threshold, optional, default: 0

Usage

When specifying an fdr

python make_grn.py --fp_rm [result matrix path] --fp_tf [tf file path] --fdr [fdr]

Example

python make_grn.py --fp_rm TE_result_matrix.txt --fp_tf mouse_tf.txt --fdr 0.01

Output

TE_result_matrix.byGRN.fdr0.01.sif, TE_result_matrix.byGRN.fdr0.01.sif.outdegrees.txt
TE_result_matrix.byGRN.fdr0.01.trimIndirect0.sif, TE_result_matrix.byGRN.fdr0.01.trimIndirect0.sif.outdegrees.txt

Usage

When specifying the t_degrees

python make_grn.py --fp_rm [result matrix path] --fp_tf [tf file path] --t_degrees [number of outdegrees]

Example

python make_grn.py --fp_rm TE_result_matrix.txt--fp_tf mouse_tf.txt --t_degrees 1000

Output

TE_result_matrix.byGRN.fdr0.06.sif, TE_result_matrix.byGRN.fdr0.06.sif.outdegrees.txt
TE_result_matrix.byGRN.fdr0.06.trimIndirect0.sif, TE_result_matrix.byGRN.fdr0.06.trimIndirect0.sif.outdegrees.txt

TODO

  • add 'JAX' backend module
  • add 'PyTorch Lightning' backend module
  • add 'TensorFlow' backend module

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fasttenet-0.1.10.tar.gz (10.5 kB view details)

Uploaded Source

Built Distribution

fasttenet-0.1.10-py3-none-any.whl (8.8 kB view details)

Uploaded Python 3

File details

Details for the file fasttenet-0.1.10.tar.gz.

File metadata

  • Download URL: fasttenet-0.1.10.tar.gz
  • Upload date:
  • Size: 10.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for fasttenet-0.1.10.tar.gz
Algorithm Hash digest
SHA256 574a7ba095ad775c9b52fe46c19f690460df18fbba21a584f6ca1c14d8239b78
MD5 be32ebf298526a7b6ab22467c54f46c2
BLAKE2b-256 55cacffb2d3a3932fa05d6f2b424566dd8547c039ef4978065b73d3d7154c66f

See more details on using hashes here.

Provenance

The following attestation bundles were made for fasttenet-0.1.10.tar.gz:

Publisher: publish.yml on cxinsys/fasttenet

Attestations:

File details

Details for the file fasttenet-0.1.10-py3-none-any.whl.

File metadata

  • Download URL: fasttenet-0.1.10-py3-none-any.whl
  • Upload date:
  • Size: 8.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for fasttenet-0.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 65c93323afd11694083e3eece0b1f983cd3a26124f6a3ef8dc263d0b20c3d8a9
MD5 12822f3c56dab4773e16ce97f8e9cdc0
BLAKE2b-256 12551e625789ccb730777f7743fd96346ac60af41f4ef7c567435b1332b8dc41

See more details on using hashes here.

Provenance

The following attestation bundles were made for fasttenet-0.1.10-py3-none-any.whl:

Publisher: publish.yml on cxinsys/fasttenet

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page