Skip to main content

An utility to protect user privacy

Project description

Fawkes

Fawkes is a privacy protection system developed by researchers at SANDLab, University of Chicago. For more information about the project, please refer to our project webpage. Contact us at fawkes-team@googlegroups.com.

We published an academic paper to summarize our work "Fawkes: Protecting Personal Privacy against Unauthorized Deep Learning Models" at USENIX Security 2020.

NEW! If you would like to use Fawkes to protect your identity, please check out our software and binary implementation on the website.

Copyright

This code is intended only for personal privacy protection or academic research.

We are currently exploring the filing of a provisional patent on the Fawkes algorithm.

Usage

$ fawkes

Options:

  • -m, --mode : the tradeoff between privacy and perturbation size. Select from low, mid, high.
  • -d, --directory : the directory with images to run protection
  • -g, --gpu : the GPU id when using GPU for optimization
  • --batch-size : number of images to run optimization together
  • --format : format of the output image.

when --mode is custom:

  • --th : perturbation threshold
  • --max-step : number of optimization steps to run
  • --lr : learning rate for the optimization
  • --feature-extractor : name of the feature extractor to use
  • --separate_target : whether select separate targets for each faces in the diectory.

Example

fawkes -d ./imgs --mode low

Tips

  • The perturbation generation takes ~60 seconds per image on a CPU machine, and it would be much faster on a GPU machine. Use batch-size=1 on CPU and batch-size>1 on GPUs.
  • Turn on separate target if the images in the directory belong to different people, otherwise, turn it off.
  • Run on GPU. The current Fawkes package and binary does not support GPU. To use GPU, you need to clone this, install the required packages in setup.py, and replace tensorflow with tensorflow-gpu. Then you can run Fawkes by python3 fawkes/protection.py [args].

How do I know my images are secure?

We are actively working on this. Python scripts that can test the protection effectiveness will be ready shortly.

Quick Installation

Install from PyPI:

pip install fawkes

If you don't have root privilege, please try to install on user namespace: pip install --user fawkes.

Citation

@inproceedings{shan2020fawkes,
  title={Fawkes: Protecting Personal Privacy against Unauthorized Deep Learning Models},
  author={Shan, Shawn and Wenger, Emily and Zhang, Jiayun and Li, Huiying and Zheng, Haitao and Zhao, Ben Y},
  booktitle="Proc. of USENIX Security",
  year={2020}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fawkes-0.3.1.tar.gz (26.1 kB view details)

Uploaded Source

Built Distribution

fawkes-0.3.1-py3-none-any.whl (27.3 kB view details)

Uploaded Python 3

File details

Details for the file fawkes-0.3.1.tar.gz.

File metadata

  • Download URL: fawkes-0.3.1.tar.gz
  • Upload date:
  • Size: 26.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.6.7

File hashes

Hashes for fawkes-0.3.1.tar.gz
Algorithm Hash digest
SHA256 566a9ffbf607ada7a285637e150604bd2857d18effd0dc36ed6ca0fdce185a29
MD5 94c6a18e4615920dd70c686ccf277dc6
BLAKE2b-256 067af07252e1c97f2fea5047a3cb2e6adca1cf0c4bd8e618cd114da5fe722afc

See more details on using hashes here.

File details

Details for the file fawkes-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: fawkes-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 27.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.6.7

File hashes

Hashes for fawkes-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 30c62e42f421e89ded53641d373f64fcf8fb212e130ff6cb5b9dff9f9bd6b4fa
MD5 3c337a5be2d352eba316053567c67c8c
BLAKE2b-256 4c4ecbb2d694ccc99ed245e87075119855c0a13f55b1f481ecd7e7896a3e3e31

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page