No project description provided
Project description
Fazah
Fazah is a Python library that enables seamless language translation for interactions with Large Language Models (LLMs). It allows users to communicate with LLMs in any language, ensuring accurate and comprehensive responses by leveraging the vast amount of information available in English on the internet.
Supported LLMs
Fazah seamlessly integrates with popular LLM APIs, including:
- Anthropic
- OpenAI
- Google Gemini
- And more!
Installation
To install Fazah, use pip:
pip install fazah
Usage
To use Fazah with the Anthropic API, follow these steps:
- Import the necessary modules:
from fazah import Fazah
from anthropic import Anthropic
- Initialize the Anthropic client with your API key:
client = Anthropic(api_key="YOUR_API_KEY")
- Create a function to generate responses using the Anthropic API:
def create_anthropic_llm_model():
def generate(prompt):
response = client.messages.create(
model="claude-3-haiku-20240307",
max_tokens=1024,
system="You are a helpful assistant.",
messages=[
{"role": "user", "content": prompt}
]
)
if isinstance(response.content, list):
response.content = response.content[0].text
elif hasattr(response.content, 'text'):
response.content = response.content.text
return response.content
return generate
- Create an instance of the Fazah class with the Anthropic LLM model:
llm_model = create_anthropic_llm_model()
fazah = Fazah(llm_model)
Using Fazah with Google Gemini API
- Set up the Google Gemini API key:
API_KEY = "YOUR_GEMINI_API_KEY"
genai.configure(api_key=API_KEY)
- Create an instance of the Google Gemini model:
model = genai.GenerativeModel('gemini-pro')
- Create an instance of the LLM model using Google Gemini:
def create_llm_model():
def generate(prompt):
response = model.generate_content(prompt)
return response.text
return generate
- Create an instance of the Fazah class with the Google Gemini LLM model:
llm_model = create_llm_model()
fazah = Fazah(llm_model)
Using Fazah with OpenAI API
- Set up the OpenAI API key:
OPENAI_API_KEY = "YOUR_OPENAI_API_KEY"
client = OpenAI(api_key=OPENAI_API_KEY)
- Create an instance of the OpenAI Chat model:
def create_chatgpt_llm_model():
def generate(prompt):
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content
return generate
- Create an instance of the Fazah class with the OpenAI Chat model:
llm_model = create_chatgpt_llm_model()
fazah = Fazah(llm_model)
Now you can use the fazah
object to process text in any language. Fazah will automatically translate the prompt to English, pass it to the respective LLM API (Google Gemini or OpenAI), and then translate the generated response back to the original language.
Key Features
- Automatic translation of user prompts from any language to English
- Leverages the extensive English language resources available on the internet
- Translates LLM responses back into the original language of the user prompt
- Seamless integration with popular LLM APIs
- Enhances the user experience by providing localized interactions
- Enables users to ask complex questions and receive comprehensive responses in their preferred language
Support
If you encounter any issues or have questions about Fazah, please contact Ajlang5@wisc.edu or wjfoster2@wisc.edu.
With Fazah, you can unlock the full potential of LLMs for a global audience, breaking down language barriers and providing an inclusive and accessible experience for all users.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file fazah-3.29.tar.gz
.
File metadata
- Download URL: fazah-3.29.tar.gz
- Upload date:
- Size: 3.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 075825b4f951d35e66cd7811ce512e8af2607bb29fb63c8f01df223fd957b968 |
|
MD5 | c6d9c8c9c66f2aa88432332f24835e00 |
|
BLAKE2b-256 | dfd59727f260a5d7a7bcbd6ba157c423120e907a052db00396aec8bbf08cf8f2 |
File details
Details for the file fazah-3.29-py3-none-any.whl
.
File metadata
- Download URL: fazah-3.29-py3-none-any.whl
- Upload date:
- Size: 3.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 178ede5fc183bff8c01dfd4e7dc22da5673c5517cca1c0eae2b3dcc322ce8f37 |
|
MD5 | 2b38c850d6cd9a13a9e15f1c92f7fecf |
|
BLAKE2b-256 | 87e39b4d6a028ce6da7b2980dc87c3d353fc937fe99761e337c902e7fb64a22e |