Skip to main content

A Python SDK for FeatBit plateform

Project description

FeatBit python sdk

Introduction

This is the Python Server SDK for the feature management platform FeatBit. It is intended for use in a multiple-users python server applications.

This SDK has two main purposes:

  • Store the available feature flags and evaluate the feature flags by given user in the server side SDK
  • Sends feature flags usage, and custom events for the insights and A/B/n testing.

Data synchonization

We use websocket to make the local data synchronized with the server, and then store them in the memory by default. Whenever there is any changes to a feature flag or his related data, the changes would be pushed to the SDK, the average synchronization time is less than 100 ms. Be aware the websocket connection can be interrupted by any error or internet interruption, but it would be restored automatically right after the problem is gone.

Offline mode support

In the offline mode, SDK DOES not exchange any data with feature flag center, this mode is only use for internal test for instance.

To open the offline mode:

config = Config(env_secret, event_url, streaming_url, offline=True)

Evaluation of a feature flag

SDK will initialize all the related data(feature flags, segments etc.) in the bootstrapping and receive the data updates in real time, as mentioned in the above

After initialization, the SDK has all the feature flags in the memory and all evaluation is done locally and synchronously, the average evaluation time is < 10 ms.

Installation

install the sdk in using pip, this version of the SDK is compatible with Python 3.6 through 3.10.

pip install fb-python-sdk

SDK

Applications SHOULD instantiate a single instance for the lifetime of the application. In the case where an application needs to evaluate feature flags from different environments, you may create multiple clients, but they should still be retained for the lifetime of the application rather than created per request or per thread.

Bootstrapping

The bootstrapping is in fact the call of constructor of FFCClient, in which the SDK will be initialized and connect to feature flag center

The constructor will return when it successfully connects, or when the timeout(default: 15 seconds) expires, whichever comes first. If it has not succeeded in connecting when the timeout elapses, you will receive the client in an uninitialized state where feature flags will return default values; it will still continue trying to connect in the background unless there has been a network error or you close the client(using stop()). You can detect whether initialization has succeeded by calling initialize().

The best way to use the SDK as a singleton, first make sure you have called fbclient.set_config() at startup time. Then fbclient.get() will return the same shared fbclient.client.FFCClient instance each time. The client will be initialized if it runs first time.

from fbclient.config import Config
from fbclient import get, set_config 

set_config(Config(env_secret, event_url, streaming_url))
client = get()

if client.initialize:
    # your code

You can also manage your fbclient.client.FBClient, the SDK will be initialized if you call fbclient.client.FBClient constructor.

from fbclient.config import Config
from fbclient.client import FBClient

client = FBClient(Config(env_secret, event_url, streaming_url), start_wait=15)

if client.initialize:
    # your code

If you prefer to have the constructor return immediately, and then wait for initialization to finish at some other point, you can use fbclient.client.fbclient.update_status_provider object, which provides an asynchronous way, as follows:

from fbclient.config import Config
from fbclient.client import FBClient

client = FFCClient(Config(env_secret), start_wait=0)
if client._update_status_provider.wait_for_OKState():
    # your code

Evaluation

SDK calculates the value of a feature flag for a given user, and returns a flag vlaue/an object that describes the way that the value was determined.

User: A dictionary of attributes that can affect flag evaluation, usually corresponding to a user of your application. This object contains built-in properties(key, name). The key and name are required. The key must uniquely identify each user; this could be a username or email address for authenticated users, or a ID for anonymous users. The name is used to search your user quickly. You may also define custom properties with arbitrary names and values. For instance, the custom key should be a string; the custom value should be a string or a number

if client.initialize:
    user = {'key': user_key, 'name': user_name, 'age': age}
    flag_value = client.variation(flag_key, user, default_value)
    # your if/else code according to flag value

If evaluation called before SDK client initialized or you set the wrong flag key or user for the evaluation, SDK will return the default value you set. The fbclient.common_types.FlagState will explain the details of the last evaluation including error raison.

If you would like to get variations of all feature flags in a special environment, you can use fbclient.client.FBClient.get_all_latest_flag_variations, SDK will return fbclient.common_types.AllFlagStates, that explain the details of all feature flags

if client.initialize:
    user = {'key': user_key, 'name': user_name}
    all_flag_values = client.get_all_latest_flag_variations(user)
    ed = all_flag_values.get(flag_key)
    flag_value = ed.variation
    # your if/else code according to flag value

    

Experiments (A/B/n Testing)

We support automatic experiments for pageviews and clicks, you just need to set your experiment on our SaaS platform, then you should be able to see the result in near real time after the experiment is started.

In case you need more control over the experiment data sent to our server, we offer a method to send custom event.

client.track_metric(user, event_name, numeric_value);

numeric_value is not mandatory, the default value is 1.

Make sure track_metric is called after the related feature flag is evaluated by simply calling variation or variation_detail otherwise, the custom event may not be included into the experiment result.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fb-python-sdk-1.0.0.tar.gz (36.2 kB view details)

Uploaded Source

Built Distribution

fb_python_sdk-1.0.0-py3-none-any.whl (46.1 kB view details)

Uploaded Python 3

File details

Details for the file fb-python-sdk-1.0.0.tar.gz.

File metadata

  • Download URL: fb-python-sdk-1.0.0.tar.gz
  • Upload date:
  • Size: 36.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for fb-python-sdk-1.0.0.tar.gz
Algorithm Hash digest
SHA256 7eea991051d9c80efd394308de22956a48736a3892e389911838b370e90f4b25
MD5 7c8aa1392e4bc06f7aab6b1deb2b467d
BLAKE2b-256 f7c127b33fa03422c7fd804476dddc52c48f8608f1f47d922c8abe9c0805bce1

See more details on using hashes here.

File details

Details for the file fb_python_sdk-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for fb_python_sdk-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 17743ffecd3925268f46fde53c148c70a112695442d6ee9b5a44ae1ab2ab6b01
MD5 6947a1cf1989e6a84d2fe96b34e34e37
BLAKE2b-256 20859673fe37e9bdaf2b9206f5a0445668caf6ecc2095cd09fe5199dc1351308

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page