Skip to main content

No project description provided

Project description

FBGEMM_GPU

FBGEMM_GPU-CPU CI FBGEMM_GPU-CUDA CI FBGEMM_GPU-ROCm CI

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance PyTorch GPU operator libraries for training and inference. The library provides efficient table batched embedding bag, data layout transformation, and quantization supports.

FBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch packages (2.1+) that are built against those CUDA versions.

See the full Documentation for more information on building, installing, and developing with FBGEMM_GPU, as well as the most up-to-date support matrix for this library.

Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

For contributions, please see the CONTRIBUTING file for ways to help out.

License

FBGEMM_GPU is BSD licensed, as found in the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file fbgemm_gpu_cpu-1.0.0-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_cpu-1.0.0-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50599252e71cb92e3a85c887ff51d846afef8a3cedfd1d98bd20cc85d3a9be75
MD5 d98e813b086c5d29e0375ff2ea56d5a1
BLAKE2b-256 3728fa3b91b1b8265408e3108f34f030493f24cdeb0c483a1111982825bff023

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_cpu-1.0.0-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_cpu-1.0.0-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2db3d15e9ccf4035f6c873d0518950eb8ece1388df92387b7355c50e97d3cb4b
MD5 292b52a00c7a2af165eecc00b9837a56
BLAKE2b-256 ec85c0b6aa319ce5dfcc9827b0750acf27b53bfb27bf6bb693f75f3ec9c595cb

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_cpu-1.0.0-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_cpu-1.0.0-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a998ff2c06e6a354a4ab9d8775770bc50353cadf3c4ad99c18a89eeb1da07c4
MD5 45770c4488340267207a4e7baed78127
BLAKE2b-256 328f128c68f16e59f360e7dc0dd22c6f47bd1f6fd3712af505f86b6f03787438

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_cpu-1.0.0-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_cpu-1.0.0-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7600c29e103e8140a5a6f28de79d90d9edffbcbd96cd231f4d382fec627224d5
MD5 0f36c6abc3aefb916ff1392c10cd0214
BLAKE2b-256 8798f4c0a19c1c8a4db1e5c26ed8d06db4a893a264af07053b5ec5019f69dc01

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_cpu-1.0.0-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_cpu-1.0.0-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9acee76775b2e29343eaf61d82eac742b0ae1987ae1e9abefcfda0b81b39058
MD5 12030f68b4fe06b5730782de987f3ad2
BLAKE2b-256 49b68c7b5e2c7566c8289af7cad6bc62e4b6b5c36007ef8aceb844eca3f5679b

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_cpu-1.0.0-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_cpu-1.0.0-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c327793f5b08e961d213ba7b7402a9d9e5e0e2f5b308cfae7073c58908aac05
MD5 7f4280532c4d1055364d1beb81cb4e12
BLAKE2b-256 e5ccdcf0179e9ad3091fbe2c48683fca4f6dfd11a88ac8ab6e6c0a8e10bb22aa

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_cpu-1.0.0-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_cpu-1.0.0-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 da943a098c1d183c05cd1faf4225f826599929c1060785b97aad683f3d1b4406
MD5 88b5915c58571267e4351003c1d4bdac
BLAKE2b-256 b96ff00b305dc43afd0c001163a2692fbc165d887ca1059a28a08a63401344b6

See more details on using hashes here.

File details

Details for the file fbgemm_gpu_cpu-1.0.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fbgemm_gpu_cpu-1.0.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2be67cc9b037cd16e4b2050218c1913c31568bd69af63f246135f3fbfb15b66e
MD5 3a22e58d755670f059b2ebc2237a839b
BLAKE2b-256 ea8c392f2db394c736b581d341b175fb86687bc2a18ac011523671e68ee32cb9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page