No project description provided
Project description
FBGEMM_GPU
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance PyTorch GPU operator libraries for training and inference. The library provides efficient table batched embedding bag, data layout transformation, and quantization supports.
FBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch packages (2.1+) that are built against those CUDA versions.
See the full Documentation for more information on building, installing, and developing with FBGEMM_GPU, as well as the most up-to-date support matrix for this library.
Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
- File a ticket in GitHub Issues
- Post a discussion in GitHub Discussions
- Reach out to us on the
#fbgemm
channel in PyTorch Slack
For contributions, please see the CONTRIBUTING
file for
ways to help out.
License
FBGEMM_GPU is BSD licensed, as found in the LICENSE
file.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for fbgemm_gpu_nightly_cpu-2024.11.12-cp312-cp312-manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 22ace5081819e1d62a80d80106e5dc4ac2da3f790647823c7d7ee20fda667586 |
|
MD5 | 34383602008526395820a6795c38aecf |
|
BLAKE2b-256 | 317aab2c3490820cf80d68f2e5e6e8f2a366f36e9cfc61618ee97f52bbfe0d1b |
Hashes for fbgemm_gpu_nightly_cpu-2024.11.12-cp312-cp312-manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ff323c1b471807f83dbe4794edff393a36e1d311fb3d94f67d7fd5ce96897660 |
|
MD5 | 144efb24e862a0450bdff46f8a6a6506 |
|
BLAKE2b-256 | fc371b5c25a0ae550abc4a094553970e3de732ce24ae68f32755c9f601b06efe |
Hashes for fbgemm_gpu_nightly_cpu-2024.11.12-cp311-cp311-manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 15c291b8569b88d8b56b9a6c02ce9437838deb740d5fcfa105995abcf849d0b2 |
|
MD5 | 11818ead1a06d6d2996591796f54024e |
|
BLAKE2b-256 | 1540bcd7d0bc4145953738913d81f7efeac4189a9f686c2ab62098993a399d7b |
Hashes for fbgemm_gpu_nightly_cpu-2024.11.12-cp311-cp311-manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0733dbe096aa6092923733140b62a6765c08d6acd1fd2e1b7101f9088f09c00f |
|
MD5 | 32a346a89ccad4795bbd14851b4ee86d |
|
BLAKE2b-256 | 48d69c42845b0f6ed846745a8b749c68fc259704096836165f1c737491c9d56c |
Hashes for fbgemm_gpu_nightly_cpu-2024.11.12-cp310-cp310-manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4801e03e3176e8c5b56066c33d9181bf879b7d73d49676ba15a08fd812afe6cf |
|
MD5 | 3ebc558b54317fbf705fa9f034a2716e |
|
BLAKE2b-256 | edf4c1393c937ee27b47283006f1372f10d8a4d836b2f5d83c5a70b8d4f363cc |
Hashes for fbgemm_gpu_nightly_cpu-2024.11.12-cp310-cp310-manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 12e9f2625092ec1ea5d4addef267cffe8f40b7b1c7c8cbd922f12d6f5523e982 |
|
MD5 | 76636eb65938f6bad4d99d55602b2999 |
|
BLAKE2b-256 | 7403a212d37b0dacf4a6dd1705d28caf12643ba82f2ac6f6650c2860bb753227 |
Hashes for fbgemm_gpu_nightly_cpu-2024.11.12-cp39-cp39-manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cb242ff777c7a512841b39ed200496907a5eef7d1f7044a6f0cda6df3995a7b6 |
|
MD5 | 421cd7475cb914ecbe8c45ff7f47622e |
|
BLAKE2b-256 | 4a0538405243b2a14b02828ef973333d601d2b9f35aeb57bac8124d6742e648f |
Hashes for fbgemm_gpu_nightly_cpu-2024.11.12-cp39-cp39-manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5dc8f518d65d61ba6d5b7a4138cf92a80a3bf1d5e3c116c6139059ee82605b76 |
|
MD5 | c8e186c19ba1227b73bee27a9df97161 |
|
BLAKE2b-256 | 29abee0d65b0b6179d5c0bf88b084f088d56d4aefd22660c1ae8a4a9efe2c492 |