Skip to main content

The fc_bench package ...

Project description

http://www.math.univ-paris13.fr/~cuvelier/software/codes/Python/fc-bench/pyfc-bench_400.png

The fc_bench Python package allows to benchmark functions and much more

Introduction:

More documentation is available on fc_bench Python package dedicated web page with an User’s Guide (pdf).

This package was tested under:

Installation:

The fc_bench Python package is available from the Python Package Index, so to install/upgrade simply type

pip install fc_bench -U

Testing :

There are demos functions in the fc_bench.demos module named bench_*. For example, run the following code under Python:

from fc_bench import demos
demos.bench_Lagrange()

The output of this code is:

#---------------------------------------------------------------------------
# Benchmarking functions:
#  fun[0],            Lag: fc_bench.demos.Lagrange
#  fun[1],         lagint: fc_bench.demos.lagint
# cmpErr[i], error between fun[0] and fun[i] outputs computed with function
#    lambda o1,o2: np.linalg.norm(o1-o2,np.inf)
# where
#    - 1st input parameter is the output of fun[0]
#    - 2nd input parameter is the output of fun[i]
#---------------------------------------------------------------------------
# Setting inputs of Lagrange polynomial functions: y=LAGRANGE(X,Y,x)
# where X is numpy.linspace(a,b,n+1), Y=fun(X) and x is random values on [a,b]
#   n is the order of the Lagrange polynomial
#   fun function is: lambda x: np.sin(x)
#   [a,b]=[-1,1]
#   X: (n+1,) numpy array
#   Y: (n+1,) numpy array
#   x: (m,)   numpy array
#   Error[i] computed with fun[i] output:
#     lambda y: np.linalg.norm(y-fun(x),np.inf)
#---------------------------------------------------------------------------
#date:2018/05/03 10:16:55
#nbruns:5
#numpy:      i4     i4        f4          f4           f4          f4           f4
#format:  {:>5}  {:>5}   {:8.3f}    {:10.3e}     {:11.3f}    {:10.3e}     {:11.3e}
#labels:      m      n    Lag(s)    Error[0]    lagint(s)    Error[1]    cmpErr[1]
            100      5     0.012   1.163e-05        0.014   1.163e-05    3.331e-16
            100      9     0.020   2.859e-10        0.023   2.859e-10    8.882e-16
            100     15     0.036   2.143e-14        0.038   2.143e-14    2.565e-14
            500      5     0.056   1.162e-05        0.071   1.162e-05    5.551e-16
            500      9     0.102   2.901e-10        0.118   2.901e-10    1.443e-15
            500     15     0.178   2.232e-14        0.188   2.232e-14    2.287e-14
           1000      5     0.111   1.163e-05        0.146   1.163e-05    5.551e-16
           1000      9     0.202   2.902e-10        0.235   2.902e-10    1.554e-15
           1000     15     0.361   2.576e-14        0.377   2.576e-14    2.620e-14

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
fc_bench-0.0.3.tar.gz (9.0 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page