The fc_meshtools package contains some simplicial meshes given by their vertices array and connectivity array

Project description

<a href="http://gmsh.info" target="_blank">gmsh</a>

<a href="http://www.math.univ-paris13.fr/~cuvelier/software/fc-meshtools-Python.html" target="_blank">fc_meshtools</a>

<a href="http://www.math.univ-paris13.fr/~cuvelier/software/fc-oogmsh-Python.html" target="_blank">fc_oogmsh</a>

<a href="https://matplotlib.org/" target="_blank">fc_meshtools</a>

<a href="http://www.python.org" target="_blank">www.python.org</a>

<a href="https://www.enthought.com/product/canopy/" target="_blank">Canopy</a>

<a href=https://www.anaconda.com" target="_blank">Anaconda</a>

<a href=http://docs.enthought.com/mayavi/mayavi/" target="_blank">Mayavi</a>

.. raw:: html

<div class="clearfix">

.. image:: http://www.math.univ-paris13.fr/~cuvelier/software/codes/Python/fc-meshtools/pyfc-meshtools_400.png
:width: 200px
:align: left

The **fc\_meshtools** Python package contains some simplicial meshes
given by their vertices array **q** and connectivity array **me**. Theses meshes can be easily used in
other Python codes for debugging or testing purpose.

.. raw:: html

</div>

|

Introduction:
-------------

A simplicial mesh is given by its vertices array **q** and its connectivity array **me**.
For demonstration purpose, some simplicial meshes are given in this package and stored in the fc_meshtools/data directory.
They can be load by using the functions getMesh2D, getMesh3D or getMesh3Ds
of the fc_meshtools.simplicial module.
Here are the kind of simplicial meshes present in this package:

- a triangular mesh in dimension 2, made with 2-simplices (ie. triangles),
- a tetrahedral mesh in dimension 3, made with 3-simplices (ie. tetrahedron),
- a triangular mesh in dimension 3 (surface mesh), made with 2-simplices,
- a line mesh in dimension 2 or 3 made with 1-simplices (ie. lines).

Installation:
-------------

The **fc\_meshtools** Python package is available from the Python Package Index, so to install/upgrade simply type

.. code::

pip install fc_meshtools -U

Thereafter, it's possible to run one of the demo functions

.. code:: python

import fc_meshtools
fc_meshtools.demos.plot3D()

.. |plot3D_fig1| image:: http://www.math.univ-paris13.fr/~cuvelier/software/codes/Python/fc-meshtools/snapshots/meshtools_plot3D_fig1_Python360.png
:width: 300
:align: middle

.. |plot3D_fig2| image:: http://www.math.univ-paris13.fr/~cuvelier/software/codes/Python/fc-meshtools/snapshots/meshtools_plot3D_fig2_Python360.png
:width: 300
:align: middle

.. |plot3D_fig3| image:: http://www.math.univ-paris13.fr/~cuvelier/software/codes/Python/fc-meshtools/snapshots/meshtools_plot3D_fig3_Python360.png [
:width: 300
:align: middle

+---------------+---------------+---------------+
| |plot3D_fig1| | |plot3D_fig2| | |plot3D_fig3| |
+---------------+---------------+---------------+

.. code:: python

import fc_meshtools
fc_meshtools.demos.plot2D()

.. |plot2D_fig1| image:: http://www.math.univ-paris13.fr/~cuvelier/software/codes/Python/fc-meshtools/snapshots/meshtools_plot2D_fig1_Python360.png
:width: 300
:align: middle

.. |plot2D_fig2| image:: http://www.math.univ-paris13.fr/~cuvelier/software/codes/Python/fc-meshtools/snapshots/meshtools_plot2D_fig2_Python360.png
:width: 300
:align: middle

.. |plot2D_fig3| image:: http://www.math.univ-paris13.fr/~cuvelier/software/codes/Python/fc-meshtools/snapshots/meshtools_plot2D_fig3_Python360.png
:width: 300
:align: middle

+---------------+---------------+---------------+
| |plot2D_fig1| | |plot2D_fig2| | |plot2D_fig3| |
+---------------+---------------+---------------+

Example:
--------

There is a complete source code used to represent the function

.. math::

(x,y,z)\mapsto \cos(3x-1)\sin(2y-2)\sin(3z)

on the upper half of a sphere.

.. code:: python

import matplotlib.pyplot as plt
from fc_tools.Matplotlib import set_axes_equal
import fc_meshtools as plt4sim
from fc_meshtools.demos import getMesh3Ds
import numpy as np
q2,me2=getMesh3Ds(2)
q1,me1=getMesh3Ds(1)
f=lambda x,y,z: np.cos(3*x-1)*np.sin(2*y-2)*np.sin(3*z)
u2=f(q2[:,0],q2[:,1],q2[:,2])
u1=f(q1[:,0],q1[:,1],q1[:,2])
plt.ion()
plt.figure(1)
pp=plt4sim.plot(q2,me2,u2)
plt4sim.plotmesh(q1,me1,color='Black',linewidths=2)
plt.colorbar(pp)
plt.axis('off')
set_axes_equal()
plt.figure(2)
pp=plt4sim.plot(q1,me1,u1,linewidths=2,vmin=min(u2),vmax=max(u2))
plt4sim.plotmesh(q2,me2,color='LightGray',alpha=0.1)
plt.colorbar(pp)
plt.axis('off')
set_axes_equal()

.. |plot3Ds_fig1| image:: http://www.math.univ-paris13.fr/~cuvelier/software/codes/Python/fc-meshtools/snapshots/meshtools_plot3Ds_fig1_Python360.png
:width: 300
:align: middle

.. |plot3Ds_fig2| image:: http://www.math.univ-paris13.fr/~cuvelier/software/codes/Python/fc-meshtools/snapshots/meshtools_plot3Ds_fig2_Python360.png
:width: 300
:align: middle

+----------------+----------------+
| |plot3Ds_fig1| | |plot3Ds_fig2| |
+----------------+----------------+