Skip to main content

FCA basic algorithms

Project description

build

FCA algorithms

This is a module providing a set of commonly used algorithms in FCA, RCA, and some of its variants. Its general intention is to provide an easy to use API so that it's easier to create other programs using these algorithms. The main algorithm that calculates formal concepts is inclose, and, in this version, it is implemented in C++. Considering this, the API is expected to behave somewhat acceptably.

API Reference

CLI

FCA

Plot a hasse diagram from a context

fca_cli -c input.csv --show_hasse

The context is expected to be a csv with the following format

name attr1 attr2
obj1 x
obj2 x
obj3 x x
obj4

Output files

fca_cli -c input.csv --show_hasse --output_dir path/to/folder/ 

Will create two files, one representing the hasse graph, the other one with a concept for each line. The line is the index in the hasse graph.

RCA

To plot the hasse diagrams of the contexts 1 and 2 after applying RCA with exists

fca_cli -k context_1.csv context_2.csv -r relation_1_2.csv relation_2_1.csv --show_hasse

to specify operator

fca_cli -k context_1.csv context_2.csv -r relation_1_2.csv relation_2_1.csv --show_hasse -o forall

FCA utils

Module for FCA basics such as retrieving concepts, drawing a hasse diagram, etc

Getting formal concepts

In batch

from fca.api_models import Context, Concept

c = Context(O : List[str], A : List[str], I : List[List[int]])
concepts = c.get_concepts(c) List[Concept]

Incrementally

from fca.api_models import IncLattice

l = IncLattice(attributes=['a', 'b', 'c', 'd'])
l.add_intent('o1', [0, 2])  # numbers are the indices of the attributes
l.add_intent('o2', [1, 2]) 
.
.
.

Getting association rules

from fca.api_models import Context

c = Context(O, A, I)
c.get_association_rules(min_support=0.4, min_confidence=1)

Drawing hasse diagram

from fca.plot.plot import plot_from_hasse
from fca.api_models import Context


k = Context(O, A, I)
k.get_lattice().plot()
# plot receives a number of kwargs such as print_latex=True|False


l = IncLattice(attributes=['a', 'b', 'c', 'd'])
l.add_intent('o1', [0, 2])  # numbers are the indices of the attributes
l.add_intent('o2', [1, 2])
.
.
.
l.plot()

Contributors

  • Ramshell (Nicolas Leutwyler)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fca-algorithms-1.0.2.tar.gz (24.5 kB view details)

Uploaded Source

Built Distribution

fca_algorithms-1.0.2-py3-none-any.whl (29.1 kB view details)

Uploaded Python 3

File details

Details for the file fca-algorithms-1.0.2.tar.gz.

File metadata

  • Download URL: fca-algorithms-1.0.2.tar.gz
  • Upload date:
  • Size: 24.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for fca-algorithms-1.0.2.tar.gz
Algorithm Hash digest
SHA256 f2846c0563708d497a131faf3d4127d9b0d8ab1bb7a0d95a394243a84f0ea2fb
MD5 eb96e76c7e593527a3293049302297b6
BLAKE2b-256 0b2df7e73311c5ef48745ed48b5fbc2e0d966dae8c58990af238aef50da9079b

See more details on using hashes here.

File details

Details for the file fca_algorithms-1.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for fca_algorithms-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 2c7880a305626f6382a038afcae4019ed77ba20f25a23be2f96bad6e788801ee
MD5 052a548dad35a37bc43961c44172ac0f
BLAKE2b-256 4fe80423d736b07245e2fe82d602c79abbb5eabf9dc54186dceb6307efac8e99

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page