Skip to main content

FCA basic algorithms

Project description

build

FCA algorithms

This is a module providing a set of commonly used algorithms in FCA, RCA, and some of its variants. Its general intention is to provide an easy to use API so that it's easier to create other programs using these algorithms. The main algorithm that calculates formal concepts is inclose, and, in this version, it is implemented in C++. Considering this, the API is expected to behave somewhat acceptably.

API Reference

CLI

FCA

Plot a hasse diagram from a context

fca_cli -c input.csv --show_hasse

The context is expected to be a csv with the following format

name attr1 attr2
obj1 x
obj2 x
obj3 x x
obj4

Output files

fca_cli -c input.csv --show_hasse --output_dir path/to/folder/ 

Will create two files, one representing the hasse graph, the other one with a concept for each line. The line is the index in the hasse graph.

RCA

To plot the hasse diagrams of the contexts 1 and 2 after applying RCA with exists

fca_cli -k context_1.csv context_2.csv -r relation_1_2.csv relation_2_1.csv --show_hasse

to specify operator

fca_cli -k context_1.csv context_2.csv -r relation_1_2.csv relation_2_1.csv --show_hasse -o forall

FCA utils

Module for FCA basics such as retrieving concepts, drawing a hasse diagram, etc

Getting formal concepts

In batch

from fca.api_models import Context, Concept

c = Context(O : List[str], A : List[str], I : List[List[int]])
concepts = c.get_concepts(c) List[Concept]

Incrementally

from fca.api_models import IncLattice

l = IncLattice(attributes=['a', 'b', 'c', 'd'])
l.add_intent('o1', [0, 2])  # numbers are the indices of the attributes
l.add_intent('o2', [1, 2]) 
.
.
.

Getting association rules

from fca.api_models import Context

c = Context(O, A, I)
c.get_association_rules(min_support=0.4, min_confidence=1)

Drawing hasse diagram

from fca.plot.plot import plot_from_hasse
from fca.api_models import Context


k = Context(O, A, I)
k.get_lattice().plot()
# plot receives a number of kwargs such as print_latex=True|False


l = IncLattice(attributes=['a', 'b', 'c', 'd'])
l.add_intent('o1', [0, 2])  # numbers are the indices of the attributes
l.add_intent('o2', [1, 2])
.
.
.
l.plot()

Contributors

  • Ramshell (Nicolas Leutwyler)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fca-algorithms-1.0.3.tar.gz (24.8 kB view details)

Uploaded Source

Built Distribution

fca_algorithms-1.0.3-py3-none-any.whl (29.4 kB view details)

Uploaded Python 3

File details

Details for the file fca-algorithms-1.0.3.tar.gz.

File metadata

  • Download URL: fca-algorithms-1.0.3.tar.gz
  • Upload date:
  • Size: 24.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for fca-algorithms-1.0.3.tar.gz
Algorithm Hash digest
SHA256 b300982fe04f0bf5e577a0aebb8844b27b0a89a8efbdfe86dd067eabd282fcd4
MD5 0806523d4f906d6e093f3b41d8407f14
BLAKE2b-256 1fa6010c225f2fc03bf1b9d49e2645be4879d1a2efedb386675deab6abbfc905

See more details on using hashes here.

File details

Details for the file fca_algorithms-1.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for fca_algorithms-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 35076bb659a2952d868f6cfdd9c760a4b9ecd427482fcbe5a1e67851fe3f213c
MD5 86eea823ba190022446ac86756aad351
BLAKE2b-256 91ca5ffa895a0ce54d79a12f7ae412fa174a951afd7fde82a7d41100c2fe1727

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page