Skip to main content

FCA basic algorithms

Project description

build

FCA algorithms

This is a module providing a set of commonly used algorithms in FCA, RCA, and some of its variants. Its general intention is to provide an easy to use API so that it's easier to create other programs using these algorithms. The main algorithm that calculates formal concepts is inclose, and, in this version, it is implemented in C++. Considering this, the API is expected to behave somewhat acceptably.

API Reference

CLI

FCA

Plot a hasse diagram from a context

fca_cli -c input.csv --show_hasse

The context is expected to be a csv with the following format

name attr1 attr2
obj1 x
obj2 x
obj3 x x
obj4

Output files

fca_cli -c input.csv --show_hasse --output_dir path/to/folder/

Will create two files, one representing the hasse graph, the other one with a concept for each line. The line is the index in the hasse graph.

RCA

To plot the hasse diagrams of the contexts 1 and 2 after applying RCA with exists

fca_cli -k context_1.csv context_2.csv -r relation_1_2.csv relation_2_1.csv --show_hasse

to specify operator

fca_cli -k context_1.csv context_2.csv -r relation_1_2.csv relation_2_1.csv --show_hasse -o forall

FCA utils

Module for FCA basics such as retrieving concepts, drawing a hasse diagram, etc

Getting formal concepts

In batch

from fca.api_models import Context, Concept

c = Context(O : List[str], A : List[str], I : List[List[int]])
concepts = c.get_concepts(c) List[Concept]

Incrementally

By intent

from fca.api_models import IncLattice

l = IncLattice(attributes=['a', 'b', 'c', 'd'])
l.add_intent('o1', [0, 2])  # numbers are the indices of the attributes
l.add_intent('o2', [1, 2])
.
.
.

By pair

from fca.api_models import IncLattice

l = IncLattice()
l.add_pair('o1', 'a')
l.add_pair('o2', 'b')
l.add_pair('o2', 'a')
.
.
.

Getting association rules

from fca.api_models import Context

c = Context(O, A, I)
c.get_association_rules(min_support=0.4, min_confidence=1)

Drawing hasse diagram

from fca.plot.plot import plot_from_hasse
from fca.api_models import Context


k = Context(O, A, I)
k.get_lattice().plot()
# plot receives a number of kwargs such as print_latex=True|False


l = IncLattice(attributes=['a', 'b', 'c', 'd'])
l.add_intent('o1', [0, 2])  # numbers are the indices of the attributes
l.add_intent('o2', [1, 2])
.
.
.
l.plot()

Contributors

  • Ramshell (Nicolas Leutwyler)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fca-algorithms-1.1.0.tar.gz (29.4 kB view details)

Uploaded Source

Built Distribution

fca_algorithms-1.1.0-py3-none-any.whl (35.3 kB view details)

Uploaded Python 3

File details

Details for the file fca-algorithms-1.1.0.tar.gz.

File metadata

  • Download URL: fca-algorithms-1.1.0.tar.gz
  • Upload date:
  • Size: 29.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for fca-algorithms-1.1.0.tar.gz
Algorithm Hash digest
SHA256 40fd9f69096b4737b1edc6a7816625d01a0168a79ab4032bf5c1543f40fe7f8d
MD5 59bb943bbbc82228fd25563a10b71d67
BLAKE2b-256 df2c6d8981a4b55f069c94c9d4a75d495ded0a97534213c45549bcf2d2b6f2bb

See more details on using hashes here.

File details

Details for the file fca_algorithms-1.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for fca_algorithms-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8893da8bee71e7aa41eb1c5d3c330c02beb7fda1b70cca623eb395322b87c9e9
MD5 64dc047fa377a46d8a1320223a575432
BLAKE2b-256 510a0005c2ad51c81b3b3847b42077f58165cebe2ca91153af3844ea88e13453

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page