Skip to main content

FCA basic algorithms

Project description

build

FCA algorithms

This is a module providing a set of commonly used algorithms in FCA, RCA, and some of its variants. Its general intention is to provide an easy to use API so that it's easier to create other programs using these algorithms. The main algorithm that calculates formal concepts is inclose, and, in this version, it is implemented in C++. Considering this, the API is expected to behave somewhat acceptably.

API Reference

CLI

FCA

Plot a hasse diagram from a context

fca_cli -c input.csv --show_hasse

The context is expected to be a csv with the following format

name attr1 attr2
obj1 x
obj2 x
obj3 x x
obj4

Output files

fca_cli -c input.csv --show_hasse --output_dir path/to/folder/

Will create two files, one representing the hasse graph, the other one with a concept for each line. The line is the index in the hasse graph.

RCA

To plot the hasse diagrams of the contexts 1 and 2 after applying RCA with exists

fca_cli -k context_1.csv context_2.csv -r relation_1_2.csv relation_2_1.csv --show_hasse

to specify operator

fca_cli -k context_1.csv context_2.csv -r relation_1_2.csv relation_2_1.csv --show_hasse -o forall

FCA utils

Module for FCA basics such as retrieving concepts, drawing a hasse diagram, etc

Getting formal concepts

In batch

from fca.api_models import Context, Concept

c = Context(O : List[str], A : List[str], I : List[List[int]])
concepts = c.get_concepts(c) List[Concept]

Incrementally

By intent

from fca.api_models import IncLattice

l = IncLattice(attributes=['a', 'b', 'c', 'd'])
l.add_intent('o1', [0, 2])  # numbers are the indices of the attributes
l.add_intent('o2', [1, 2])
.
.
.

By pair

from fca.api_models import IncLattice

l = IncLattice()
l.add_pair('o1', 'a')
l.add_pair('o2', 'b')
l.add_pair('o2', 'a')
.
.
.

Getting association rules

from fca.api_models import Context

c = Context(O, A, I)
c.get_association_rules(min_support=0.4, min_confidence=1)

Drawing hasse diagram

from fca.plot.plot import plot_from_hasse
from fca.api_models import Context


k = Context(O, A, I)
k.get_lattice().plot()
# plot receives a number of kwargs such as print_latex=True|False


l = IncLattice(attributes=['a', 'b', 'c', 'd'])
l.add_intent('o1', [0, 2])  # numbers are the indices of the attributes
l.add_intent('o2', [1, 2])
.
.
.
l.plot()

Contributors

  • Ramshell (Nicolas Leutwyler)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fca-algorithms-1.1.2.tar.gz (30.5 kB view details)

Uploaded Source

Built Distribution

fca_algorithms-1.1.2-py3-none-any.whl (36.3 kB view details)

Uploaded Python 3

File details

Details for the file fca-algorithms-1.1.2.tar.gz.

File metadata

  • Download URL: fca-algorithms-1.1.2.tar.gz
  • Upload date:
  • Size: 30.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for fca-algorithms-1.1.2.tar.gz
Algorithm Hash digest
SHA256 308d960bc4b4c50aeb3cadff6d9bc974032c3e1c0280969be1a1fe64afb74aff
MD5 70e2b59edd8423637fa450e2b1696162
BLAKE2b-256 315b38fe1f5ea84a103d1eba6b3698f68e8e97664c62e062538343edc232c412

See more details on using hashes here.

File details

Details for the file fca_algorithms-1.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for fca_algorithms-1.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 1ad4eeb79fe290f3f88295bd42a27250c081a97b9357566f06b8cdc739bf03fd
MD5 1543a52f14c0e443478c6807ebcb27ec
BLAKE2b-256 3a0b7539e01355c9055141c5f98bde04140c98350fdcc3efbcc6126eb58bf250

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page