Skip to main content

Lazy binary classifier based on Formal Concept Analysis

Project description

Installation

$ pip install fca_lazy_clf

Requirements

The train and test datasets must be represented as pandas.DataFrame. The classifier uses only attributes of types numpy.dtype('O'), np.dtype('int64') and attributes with 2 any values. Other attributes will not be used. The target attribute must be binary.

Example

>>> import fca_lazy_clf as fca
>>> import pandas as pd
>>> from sklearn import model_selection

>>> data = pd.read_csv('https://datahub.io/machine-learning/tic-tac-toe-endgame/r/tic-tac-toe.csv')
>>> data.head()

  TL TM TR ML MM MR BL BM BR  class
0  x  x  x  x  o  o  x  o  o   True
1  x  x  x  x  o  o  o  x  o   True
2  x  x  x  x  o  o  o  o  x   True
3  x  x  x  x  o  o  o  b  b   True
4  x  x  x  x  o  o  b  o  b   True

>>> X = data.iloc[:, :-1] # All attributes except the last one
>>> y = data.iloc[:, -1] # Last attribute
>>> X_train, X_test, y_train, y_test      = model_selection.train_test_split(X, y, test_size=0.33, random_state=0)

>>> clf = fca.LazyClassifier(threshold=0.000001, bias='false')
>>> clf.fit(X_train, y_train)
>>> clf.score(X_test, y_test)

0.9716088328075709

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fca_lazy_clf-0.3.tar.gz (3.9 kB view details)

Uploaded Source

File details

Details for the file fca_lazy_clf-0.3.tar.gz.

File metadata

  • Download URL: fca_lazy_clf-0.3.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for fca_lazy_clf-0.3.tar.gz
Algorithm Hash digest
SHA256 4b4acc85255e51d070023764dc78d9fd2378b5a67a096cb4cc3f803d010c4d8a
MD5 4e7f61ec4970aa7dac8d20c68ed6f518
BLAKE2b-256 ea61936da7c288fc713e8c9bb5fbe71b8ad03634dd82ecad95b6d26c8f862583

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page