Lazy binary classifier based on Formal Concept Analysis
Project description
Installation
$ pip install fca_lazy_clf
Requirements
The train and test datasets must be represented as pandas.DataFrame
. The classifier uses only attributes of types numpy.dtype('O')
, np.dtype('int64')
and attributes with 2 any values. Other attributes will not be used. The target attribute must be binary.
Example
>>> import fca_lazy_clf as fca
>>> import pandas as pd
>>> from sklearn import model_selection
>>> data = pd.read_csv('https://datahub.io/machine-learning/tic-tac-toe-endgame/r/tic-tac-toe.csv')
>>> data.head()
TL TM TR ML MM MR BL BM BR class
0 x x x x o o x o o True
1 x x x x o o o x o True
2 x x x x o o o o x True
3 x x x x o o o b b True
4 x x x x o o b o b True
>>> X = data.iloc[:, :-1] # All attributes except the last one
>>> y = data.iloc[:, -1] # Last attribute
>>> X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33, random_state=0)
>>> clf = fca.LazyClassifier(threshold=0.000001, bias='false')
>>> clf.fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.9716088328075709
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
fca_lazy_clf-0.3.tar.gz
(3.9 kB
view details)
File details
Details for the file fca_lazy_clf-0.3.tar.gz
.
File metadata
- Download URL: fca_lazy_clf-0.3.tar.gz
- Upload date:
- Size: 3.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4b4acc85255e51d070023764dc78d9fd2378b5a67a096cb4cc3f803d010c4d8a |
|
MD5 | 4e7f61ec4970aa7dac8d20c68ed6f518 |
|
BLAKE2b-256 | ea61936da7c288fc713e8c9bb5fbe71b8ad03634dd82ecad95b6d26c8f862583 |