Skip to main content

Lazy binary classifier based on Formal Concept Analysis

Project description

Installation

$ pip install fca_lazy_clf

Requirements

The train and test datasets must be represented as pandas.DataFrame. The classifier uses only attributes of types numpy.dtype('O'), np.dtype('int64') and attributes with 2 any values. Other attributes will not be used. The target attribute must be binary.

Example

>>> import fca_lazy_clf as fca
>>> import pandas as pd
>>> from sklearn import model_selection

>>> data = pd.read_csv('https://datahub.io/machine-learning/tic-tac-toe-endgame/r/tic-tac-toe.csv')
>>> data.head()

  TL TM TR ML MM MR BL BM BR  class
0  x  x  x  x  o  o  x  o  o   True
1  x  x  x  x  o  o  o  x  o   True
2  x  x  x  x  o  o  o  o  x   True
3  x  x  x  x  o  o  o  b  b   True
4  x  x  x  x  o  o  b  o  b   True

>>> X = data.iloc[:, :-1] # All attributes except the last one
>>> y = data.iloc[:, -1] # Last attribute
>>> X_train, X_test, y_train, y_test      = model_selection.train_test_split(X, y, test_size=0.33, random_state=0)

>>> clf = fca.LazyClassifier(threshold=0.000001, bias='false')
>>> clf.fit(X_train, y_train)
>>> clf.score(X_test, y_test)

0.9716088328075709

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for fca-lazy-clf, version 0.3
Filename, size File type Python version Upload date Hashes
Filename, size fca_lazy_clf-0.3.tar.gz (3.9 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page