Chainer Implementation of FCIS
Project description
chainer-fcis - FCIS
===================
[](https://pypi.python.org/pypi/fcis)


This is [Chainer](https://github.com/chainer/chainer) implementation of [Fully Convolutional Instance-aware Semantic Segmentation](https://arxiv.org/abs/1611.07709).
Original Mxnet repository is [msracver/FCIS](https://github.com/msracver/FCIS).
Requirement
-----------
- [CuPy](https://github.com/cupy/cupy)
- [Chainer](https://github.com/chainer/chainer)
- [ChainerCV](https://github.com/chainer/chainercv)
- OpenCV2
Additional Requirement
----------------------
- For COCO Dataset class
- [Cython](http://cython.org/)
- [pycocotools](https://github.com/cocodataset/cocoapi)
- For COCO Training
- [OpenMPI](https://www.open-mpi.org/)
- [nccl](https://developer.nvidia.com/nccl)
- [ChainerMN](https://github.com/chainer/chainermn)
Notification
------------
- Only GPU implementation, No CPU implementation yet.
TODO
----
- VOC
- [x] Reproduce original repo training accuracy
- [ ] Refine evaluation code
- COCO
- [ ] Reproduce original repo training accuracy
- [ ] Refine evaluation code
Installation
------------
We recommend to use [Anacoda](https://anaconda.org/).
```bash
# Requirement installation
conda create -n fcis python=2.7
conda install -c menpo opencv
pip install cupy
# Installation
pip install fcis
```
Inference
---------
```bash
cd examples/coco/
python demo.py
```
Above is our implementation output, and below is original.
<img src="static/output.png" width="60%" >
<img src="static/original_output.png" width="60%" >
Training
--------
```bash
cd examples/voc/
python train.py
```
LICENSE
-------
[MIT LICENSE](LICENSE)
Powered by [DL HACKS](http://deeplearning.jp/hacks/)
===================
[](https://pypi.python.org/pypi/fcis)


This is [Chainer](https://github.com/chainer/chainer) implementation of [Fully Convolutional Instance-aware Semantic Segmentation](https://arxiv.org/abs/1611.07709).
Original Mxnet repository is [msracver/FCIS](https://github.com/msracver/FCIS).
Requirement
-----------
- [CuPy](https://github.com/cupy/cupy)
- [Chainer](https://github.com/chainer/chainer)
- [ChainerCV](https://github.com/chainer/chainercv)
- OpenCV2
Additional Requirement
----------------------
- For COCO Dataset class
- [Cython](http://cython.org/)
- [pycocotools](https://github.com/cocodataset/cocoapi)
- For COCO Training
- [OpenMPI](https://www.open-mpi.org/)
- [nccl](https://developer.nvidia.com/nccl)
- [ChainerMN](https://github.com/chainer/chainermn)
Notification
------------
- Only GPU implementation, No CPU implementation yet.
TODO
----
- VOC
- [x] Reproduce original repo training accuracy
- [ ] Refine evaluation code
- COCO
- [ ] Reproduce original repo training accuracy
- [ ] Refine evaluation code
Installation
------------
We recommend to use [Anacoda](https://anaconda.org/).
```bash
# Requirement installation
conda create -n fcis python=2.7
conda install -c menpo opencv
pip install cupy
# Installation
pip install fcis
```
Inference
---------
```bash
cd examples/coco/
python demo.py
```
Above is our implementation output, and below is original.
<img src="static/output.png" width="60%" >
<img src="static/original_output.png" width="60%" >
Training
--------
```bash
cd examples/voc/
python train.py
```
LICENSE
-------
[MIT LICENSE](LICENSE)
Powered by [DL HACKS](http://deeplearning.jp/hacks/)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
fcis-2.1.3.tar.gz
(1.5 MB
view details)
File details
Details for the file fcis-2.1.3.tar.gz.
File metadata
- Download URL: fcis-2.1.3.tar.gz
- Upload date:
- Size: 1.5 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
20e4776660c492d743422b7c9c392425dfa07e28c2b8c91e8842e6559ec89fa8
|
|
| MD5 |
85dd71dfb422c22cad10561eba9582aa
|
|
| BLAKE2b-256 |
652e71c3ad2a4533de682b128216d75a040abec087027d0611c12f423015955f
|