Skip to main content

functional data analysis using the square root slope framework

Project description

fdasrsf: Elastic Functional Data Analysis in Python

Build codecov Documentation Status PyPI version Anaconda-Server Badge Join the chat at https://gitter.im/fdasrsf_python/community

fdasrsf

A python package for functional data analysis using the square root slope framework and curves using the square root velocity framework which performs pair-wise and group-wise alignment as well as modeling using functional component analysis and regression.

Installation


v2.6.1 is on pip and can be installed using

pip install fdasrsf

or conda

conda install -c conda-forge fdasrsf

To install the most up to date version on github

pip install -e .

please see requirements for a list of packages fdasrsf depends on


Documentation

The documentation is available at fdasrsf-python.readthedocs.io/en/latest, which includes detailed information of the different modules, classes and methods of the package, along with several examples showing different functionalities.


Contributions

All contributions are welcome. You can help this project be better by reporting issues, bugs, or forking the repo and creating a pull request.


License

The package is licensed under the BSD 3-Clause License. A copy of the license can be found along with the code.


References

See references below on methods implemented in this package, some of the papers can be found at this website

Tucker, J. D. 2014, Functional Component Analysis and Regression using Elastic Methods. Ph.D. Thesis, Florida State University.

Robinson, D. T. 2012, Function Data Analysis and Partial Shape Matching in the Square Root Velocity Framework. Ph.D. Thesis, Florida State University.

Huang, W. 2014, Optimization Algorithms on Riemannian Manifolds with Applications. Ph.D. Thesis, Florida State University.

Srivastava, A., Wu, W., Kurtek, S., Klassen, E. and Marron, J. S. (2011). Registration of Functional Data Using Fisher-Rao Metric. arXiv:1103.3817v2 [math.ST].

Tucker, J. D., Wu, W. and Srivastava, A. (2013). Generative models for functional data using phase and amplitude separation. Computational Statistics and Data Analysis 61, 50-66.

J. D. Tucker, W. Wu, and A. Srivastava, "Phase-Amplitude Separation of Proteomics Data Using Extended Fisher-Rao Metric," Electronic Journal of Statistics, Vol 8, no. 2. pp 1724-1733, 2014.

J. D. Tucker, W. Wu, and A. Srivastava, "Analysis of signals under compositional noise With applications to SONAR data," IEEE Journal of Oceanic Engineering, Vol 29, no. 2. pp 318-330, Apr 2014.

Srivastava, A., Klassen, E., Joshi, S., Jermyn, I., (2011). Shape analysis of elastic curves in euclidean spaces. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (7), 1415-1428.

S. Kurtek, A. Srivastava, and W. Wu. Signal estimation under random time-warpings and nonlinear signal alignment. In Proceedings of Neural Information Processing Systems (NIPS), 2011.

Wen Huang, Kyle A. Gallivan, Anuj Srivastava, Pierre-Antoine Absil. "Riemannian Optimization for Elastic Shape Analysis", Short version, The 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014).

Cheng, W., Dryden, I. L., and Huang, X. (2016). Bayesian registration of functions and curves. Bayesian Analysis, 11(2), 447-475.

W. Xie, S. Kurtek, K. Bharath, and Y. Sun, A geometric approach to visualization of variability in functional data, Journal of American Statistical Association 112 (2017), pp. 979-993.

Lu, Y., R. Herbei, and S. Kurtek, 2017: Bayesian registration of functions with a Gaussian process prior. Journal of Computational and Graphical Statistics, 26, no. 4, 894–904.

Lee, S. and S. Jung, 2017: Combined analysis of amplitude and phase variations in functional data. arXiv:1603.01775 [stat.ME], 1–21.

J. D. Tucker, J. R. Lewis, and A. Srivastava, “Elastic Functional Principal Component Regression,” Statistical Analysis and Data Mining, vol. 12, no. 2, pp. 101-115, 2019.

J. D. Tucker, J. R. Lewis, C. King, and S. Kurtek, “A Geometric Approach for Computing Tolerance Bounds for Elastic Functional Data,” Journal of Applied Statistics, 10.1080/02664763.2019.1645818, 2019.

T. Harris, J. D. Tucker, B. Li, and L. Shand, "Elastic depths for detecting shape anomalies in functional data," Technometrics, 10.1080/00401706.2020.1811156, 2020.

M. K. Ahn, J. D. Tucker, W. Wu, and A. Srivastava. “Regression Models Using Shapes of Functions as Predictors” Computational Statistics and Data Analysis, 10.1016/j.csda.2020.107017, 2020.

J. D. Tucker, L. Shand, and K. Chowdhary. “Multimodal Bayesian Registration of Noisy Functions using Hamiltonian Monte Carlo”, Computational Statistics and Data Analysis, accepted, 2021.

Q. Xie, S. Kurtek, E. Klassen, G. E. Christensen and A. Srivastava. Metric-based pairwise and multiple image registration. IEEE European Conference on Computer Vision (ECCV), September, 2014

X. Zhang, S. Kurtek, O. Chkrebtii, and J. D. Tucker, “Elastic k-means clustering of functional data for posterior exploration, with an application to inference on acute respiratory infection dynamics”, arXiv:2011.12397 [stat.ME], 2020.

J. D. Tucker and D. Yarger, “Elastic Functional Changepoint Detection of Climate Impacts from Localized Sources”, Envirometrics, 10.1002/env.2826, 2023.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fdasrsf-2.6.7.tar.gz (4.8 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

fdasrsf-2.6.7-cp313-cp313-win_amd64.whl (576.8 kB view details)

Uploaded CPython 3.13Windows x86-64

fdasrsf-2.6.7-cp313-cp313-musllinux_1_2_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

fdasrsf-2.6.7-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

fdasrsf-2.6.7-cp313-cp313-macosx_12_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.13macOS 12.0+ ARM64

fdasrsf-2.6.7-cp312-cp312-win_amd64.whl (582.2 kB view details)

Uploaded CPython 3.12Windows x86-64

fdasrsf-2.6.7-cp312-cp312-musllinux_1_2_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

fdasrsf-2.6.7-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

fdasrsf-2.6.7-cp312-cp312-macosx_12_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.12macOS 12.0+ ARM64

fdasrsf-2.6.7-cp311-cp311-win_amd64.whl (587.5 kB view details)

Uploaded CPython 3.11Windows x86-64

fdasrsf-2.6.7-cp311-cp311-musllinux_1_2_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

fdasrsf-2.6.7-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

fdasrsf-2.6.7-cp311-cp311-macosx_12_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.11macOS 12.0+ ARM64

fdasrsf-2.6.7-cp310-cp310-win_amd64.whl (587.2 kB view details)

Uploaded CPython 3.10Windows x86-64

fdasrsf-2.6.7-cp310-cp310-musllinux_1_2_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

fdasrsf-2.6.7-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

fdasrsf-2.6.7-cp310-cp310-macosx_12_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.10macOS 12.0+ ARM64

File details

Details for the file fdasrsf-2.6.7.tar.gz.

File metadata

  • Download URL: fdasrsf-2.6.7.tar.gz
  • Upload date:
  • Size: 4.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for fdasrsf-2.6.7.tar.gz
Algorithm Hash digest
SHA256 ad4a007da199f28f36059f5fef74a66f3dc723f048dedc987533bb6e3da7be6b
MD5 7e88068c80896ebb7bd47872505ce759
BLAKE2b-256 f998cad639a72b14a34d6e1c921a69d1d09f99ec02e5042700b9f4de2d2be563

See more details on using hashes here.

File details

Details for the file fdasrsf-2.6.7-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: fdasrsf-2.6.7-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 576.8 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for fdasrsf-2.6.7-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 b7b0d9b04fb75dd5b74e11f380f145382b235639b527d91b1d6b58fe187a4d71
MD5 3545cc786ac3065b8d79eb6030149051
BLAKE2b-256 ff2d97ceca219443bf1c7b7a9ad300754e3d2d4aaf64a1e3dfd9536c8aaf038b

See more details on using hashes here.

File details

Details for the file fdasrsf-2.6.7-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fdasrsf-2.6.7-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7c8ffa98a7ea8f0db0b0cb735f4d7bedd682ebea0e5514c99fedfc440eabb48c
MD5 c591a347544a5b81d3834306e000b694
BLAKE2b-256 66663b08ae7ee9742d3139323efd1b322d9fd4651fd54e7d51247313aba2cfe2

See more details on using hashes here.

File details

Details for the file fdasrsf-2.6.7-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for fdasrsf-2.6.7-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 cb9dbd788765d15f95bd06ca90399d5f21db28709191d67bfa007f67e19f87e3
MD5 c11ca67ea968e2ab33b9d968459d05cd
BLAKE2b-256 6e3748cb060155d536e4530eb1448fe0e0ea5804f149665e51699207b4833f9f

See more details on using hashes here.

File details

Details for the file fdasrsf-2.6.7-cp313-cp313-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for fdasrsf-2.6.7-cp313-cp313-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 a3133866cda956b9a5e9a6688304b62155ed947312706dc99794d4d2b120327c
MD5 83b45a582b38ecaa6ea16b14f785e843
BLAKE2b-256 f598f7b5e6371f5ae75584637b876e4601ece23d9721fff66e4234ab35144402

See more details on using hashes here.

File details

Details for the file fdasrsf-2.6.7-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fdasrsf-2.6.7-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 582.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for fdasrsf-2.6.7-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d558267f25db4a0a418f0f22b033ef5df8abea1dd060ebaadc2192e08e5ede92
MD5 ea717425c968179c5085918a156b532b
BLAKE2b-256 3bf974009d764495b72fa21bbf535518a03344289c219c8ccffae736e1d29044

See more details on using hashes here.

File details

Details for the file fdasrsf-2.6.7-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fdasrsf-2.6.7-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9bede4d0aa14da0b3f50aae9c86218597cd70c944922c3f73f0a6f77bc45336c
MD5 dfb89a8712b0324e8db3faf3196c9e9b
BLAKE2b-256 346d6313da90184a8dd97bf805ff778c6e5a23327eb9ed9c36d3883b818b8e68

See more details on using hashes here.

File details

Details for the file fdasrsf-2.6.7-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for fdasrsf-2.6.7-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 93edb97501e588a3cb4a4c46b372dcd67c9ec7a5fbc5aa4cd906999ce8dcbe36
MD5 2d6c01b21e44e83428dec12ea9fc7eef
BLAKE2b-256 d77c8d564a56aab918c314722743ec209c3ba4ad520d22be516c98e11104691c

See more details on using hashes here.

File details

Details for the file fdasrsf-2.6.7-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for fdasrsf-2.6.7-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f43787d08538cc1a44bdf605dd991ef9ebf9b52a310e67d385a276380f9604ac
MD5 0297096953d4b47d3ca419336cf58f01
BLAKE2b-256 fa1317edff8caf03c86762ab2f44e62940407138623c2ceaece5c9f5c40a6069

See more details on using hashes here.

File details

Details for the file fdasrsf-2.6.7-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fdasrsf-2.6.7-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 587.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for fdasrsf-2.6.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 69e2c8d17505ddf4373faffd04c6de0c6270c5c4caa2cf5752175052d5571b15
MD5 d2469de0705908c48063f5018962b77a
BLAKE2b-256 eafda89793404ede5277d9ea07255285887badcb8f8c45be25bbde570b387db4

See more details on using hashes here.

File details

Details for the file fdasrsf-2.6.7-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fdasrsf-2.6.7-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4c6030b4d4d1a3baf4cea9016504ef55c148d65648daf7ff11a3a47f0ecad6c4
MD5 35301a7c71a0d9a829d1d0e037df68b1
BLAKE2b-256 aed073a848836f4a1095096c51e7551853229922da2781802cf5c24335720c52

See more details on using hashes here.

File details

Details for the file fdasrsf-2.6.7-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for fdasrsf-2.6.7-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 2dedecbc6924ac09d85a9f6d828cfc586a79810f576e7639cc6b6328b874fdde
MD5 e170572d50b45a3174e9c119c1c057c1
BLAKE2b-256 1026ab961f55416bc80630aa3bd76c49250a87bcca26c6eda34172baf95458b1

See more details on using hashes here.

File details

Details for the file fdasrsf-2.6.7-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for fdasrsf-2.6.7-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 680a355f0c5b57f33fa18d66ea9f3cf7eabbaaa1f81b35a62403cb71c2c13a79
MD5 b1204b66c6f540cff0dd419bb94b5fbb
BLAKE2b-256 0141eaf3a92969cbd59342ea2f7c7845672eef5bf78ecb20767a1c5979295e62

See more details on using hashes here.

File details

Details for the file fdasrsf-2.6.7-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fdasrsf-2.6.7-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 587.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for fdasrsf-2.6.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fef3ffd6192eafa23194bc7f4cb5fbd463cdc4ea23a1b6a389bb0f109445ac49
MD5 6f8ef7558f09969fca71cb2ac07c21dd
BLAKE2b-256 44b462bd496be47f4f1cf18ba8e2316f1495e59c4e96d79aa52e822e832bdf7f

See more details on using hashes here.

File details

Details for the file fdasrsf-2.6.7-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for fdasrsf-2.6.7-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 613cabfd931adf0884017133d2e86540cfd30805b279f3605d7fc691c5fcfde7
MD5 56035a3e4e16079ff7120c0de8cde6f2
BLAKE2b-256 243c0438e69b55a0ee7c8b85b060a554c5899065dea479cfae72dc2e8c9c59c6

See more details on using hashes here.

File details

Details for the file fdasrsf-2.6.7-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for fdasrsf-2.6.7-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 c9ed0f06a74d47571e29a5bd5f4b6c9694ad47289459f874f5fcf49f31d86f66
MD5 c1e7cc97c66980085f6aa12198374ff7
BLAKE2b-256 e54f2d6b220cb0c8d000342049a5a53ed1e7f41aca7eef4a5e4533c959b179c1

See more details on using hashes here.

File details

Details for the file fdasrsf-2.6.7-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for fdasrsf-2.6.7-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 67cb871764d0ae089b51887cb12a37d73d217ad1c70a4bcb6a77ba0f8e82081b
MD5 9e2c720f32ae1216da13cc6a263a0068
BLAKE2b-256 08b386598c58b96b9c6ed0475df62f7f60912a41253d590e8e9d6758d4acdaa2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page