Skip to main content

Finite difference coefficient estimator

Project description

Python implementation of the algorithm presented in:

Fornberg, B. (1988). Generation of finite difference formulas on arbitrarily spaced grids. Mathematics of computation, 51(184), 699-706.

This algorithm can estimate the coefficients of the finite difference formula used to estimate any derivative of an unidimensional function at a point x_0 given a grid of points (mostly neighbors of x_0). The accuracy level is determined by the number of grid points used in each estimation.

Highlights

  1. Grid points do not have to be equally spaced.

  2. x_0 does not have to be one of the grid points.

  3. As a result of 2., the algorithm can also be used to interpolate a function at a point x_0, by using the coefficients of the derivative of order zero.

  4. In a single M order derivative approximation the coefficients needed to estimate the derivative at any order from zero to M are calculated.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fdce-0.1.1-cp310-cp310-win_amd64.whl (12.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

fdce-0.1.1-cp310-cp310-win32.whl (12.1 kB view details)

Uploaded CPython 3.10 Windows x86

fdce-0.1.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

fdce-0.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (24.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fdce-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl (9.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fdce-0.1.1-cp39-cp39-win_amd64.whl (12.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

fdce-0.1.1-cp39-cp39-win32.whl (12.1 kB view details)

Uploaded CPython 3.9 Windows x86

fdce-0.1.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

fdce-0.1.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (24.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fdce-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl (9.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fdce-0.1.1-cp38-cp38-win_amd64.whl (12.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

fdce-0.1.1-cp38-cp38-win32.whl (12.1 kB view details)

Uploaded CPython 3.8 Windows x86

fdce-0.1.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

fdce-0.1.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (24.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fdce-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl (9.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file fdce-0.1.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fdce-0.1.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for fdce-0.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ad89ca3036d5ab06981ca29d89a21258cb609e44ab5dc54197e8e7b2553082ac
MD5 68ed103ae7c89a6983bb0654d077541f
BLAKE2b-256 904744210668a2f3de8d9d88224e16c9fd14ee938a4b2333d41acf045a572c2d

See more details on using hashes here.

File details

Details for the file fdce-0.1.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: fdce-0.1.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 12.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for fdce-0.1.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 a65a8fedf040927d2eb5dbb46087f02ad8b95f8f7fdc09527dd991ac4efccd4d
MD5 92d886feeb292d5da8706569f4c3c5d9
BLAKE2b-256 0551d4d29a478f6e8f019e81f1141f923216446c2c69ac8f7c4a61e8f61fee0b

See more details on using hashes here.

File details

Details for the file fdce-0.1.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fdce-0.1.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb33813f327cac338f5283c17666df93c0817b96b6428494fe5a1dfaba98e409
MD5 d877c6c901a4b04c2f13b32786f381aa
BLAKE2b-256 4f11a0a9883c59a1a8903ab67bc7bac3d1f1c02b733e6c34c711d22d708157d1

See more details on using hashes here.

File details

Details for the file fdce-0.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fdce-0.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dec86659f0c5062dddf0905d6b1ee3f55242d8dcc1819eedb977141cc6507294
MD5 fca6a369dbfeadd7b92d1331fe98c398
BLAKE2b-256 356c4bd6dc53ff8a609f54515dc5e854ca03b9d9ca11337bcd913604f8a4b38f

See more details on using hashes here.

File details

Details for the file fdce-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fdce-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b8a644cc1ae2da2712a9d9e2b74b9cb8f1f362961afa297177e610a740682772
MD5 2d98133f56186c719b63259ba5f5e4e7
BLAKE2b-256 014c94464f56b4e96dd3dc27900f6461a09c37d72a84573428e625768ccea536

See more details on using hashes here.

File details

Details for the file fdce-0.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fdce-0.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 12.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for fdce-0.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8afee5972d8f53434a95058006ae4b5e768925c3fb38d7a07dc34fdd682d7b3e
MD5 d794eb4342fc6bca613f142cf31b8e92
BLAKE2b-256 c896de73d3e9efa0edd00a3351fbfc18154e59cc816f8a659ac8dffe15fb9b9c

See more details on using hashes here.

File details

Details for the file fdce-0.1.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: fdce-0.1.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for fdce-0.1.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 cd9b24c57e2a617f9b968972ca81927e1c0247369573ec9f8aab31d9c97fbd55
MD5 926d88d8104efab543ee217d9d05b052
BLAKE2b-256 b39e018275d451e05963d7ef6354eb6ff9d7c8e64105dfc37b678e30a28cbb18

See more details on using hashes here.

File details

Details for the file fdce-0.1.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fdce-0.1.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b1b363406f8f57c5050ea8737c9632580505421d6b7e2686c9a145e9abde368
MD5 0ed7bd8f8c268333357ecb5662c952c8
BLAKE2b-256 4beb5ce6ac064eedf07ff6744894712f7c678dba5ec461ccba6c9b0d5ac3c4bb

See more details on using hashes here.

File details

Details for the file fdce-0.1.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fdce-0.1.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b25f5a73adee5d5291ffd469df0e2ba8eb4472a861fb4003902b33b589cde365
MD5 6a863a2a725dc96c9d13796aae1a97c1
BLAKE2b-256 4d8a4d1ec6406e169d45d3b27ee57feff28f9aebafacc74b13214604785e671b

See more details on using hashes here.

File details

Details for the file fdce-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fdce-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6361a960a6bfb0815b2bae72f0556a4d97969bd8f3b15a6b6e6b1cf1001e883e
MD5 6b7e8d06d0bfef0fee4531e789a48bc8
BLAKE2b-256 185d9d1431174f8a4f3b087d17d248f2a0d8740f48eeb518dd8a45cd299eca27

See more details on using hashes here.

File details

Details for the file fdce-0.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fdce-0.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 12.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for fdce-0.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d864f411abc21d70f6fa8c1bb8f4bfb9b69fc7ba9af26cc3840936d31f0209d2
MD5 52a4cca34036a59a04d1a5e49b2a5f2c
BLAKE2b-256 901c1056597b910d4d50043d614b1fe4ae56bf9d5fa5dc0cf094883b3e243a00

See more details on using hashes here.

File details

Details for the file fdce-0.1.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: fdce-0.1.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for fdce-0.1.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d9d1df6584ef317d4b718a00e10903603775c70a7274b95ec0585850d648b3e7
MD5 b926c29687e3b3c8871a4687230e5380
BLAKE2b-256 ab5926e0dccd446bd316444cc3866d26464746bd0b2d1d94815775069678307e

See more details on using hashes here.

File details

Details for the file fdce-0.1.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fdce-0.1.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d455d00cf29da3427cf73e79ea7d02c6c1a7ae51710065f2ffd3d5a84b13e42b
MD5 6644c90cc97072a2800a05c4bf41dedd
BLAKE2b-256 60fb2b2f2112952c39ddd1601ab75c8124d4fecea28d6e8c9dbbf5ef8d95bf76

See more details on using hashes here.

File details

Details for the file fdce-0.1.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fdce-0.1.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0c640309b5deacee96d0c19d530f0bd6eef01a3c24c1bc1db4c56c9df39dd94d
MD5 8cff4f07d1b1bddbc83d90f16f383ba1
BLAKE2b-256 b9555797bb7c461d11470478fc81fc2be8c46d2d7dce71e050a6a1b2ec49cf5e

See more details on using hashes here.

File details

Details for the file fdce-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fdce-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e8ba346edd2aa9ce1f77154174ebd372e78b7ef9427f381e60522d7c693d3ab0
MD5 0071b1921d6bb4022ffefb7b38947e4a
BLAKE2b-256 fdd42f8a7a92d11be106de108b4ff5670fa6ea270c1c63c9191c0a95f9491928

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page