Skip to main content

An easy to use face detection module based on MTCNN and RetinaFace algorithms.

Project description

FDet - Deep Learning Face Detection

Build CodeFactor codecov Platform PyPI - Python Version PyPI GitHub release (latest by date) GitHub

The fdet is a ready-to-use implementation of deep learning face detectors using PyTorch.

Example

You can use it directly in your code, as a python library:

>>> from fdet import io, RetinaFace

>>> detector = RetinaFace(backbone='RESNET50')
>>> detector.detect(io.read_as_rgb('path_to_image.jpg'))
[{'box': [511, 47, 35, 45], 'confidence': 0.9999996423721313,
  'keypoints': {'left_eye': [517, 70], 'right_eye': [530, 65], 'nose': [520, 77],
                'mouth_left': [522, 87], 'mouth_right': [531, 83]}}]

Or through command-line application:

fdet retinaface -b RESNET50 -i path_to_image.jpg -o detections.json

Features

Currently, there are two different detectors available on FDet:

  • MTCNN - Joint face detection and alignment using multitask cascaded convolutional networks [zhang:2016]
  • RetinaFace - Single-stage dense face localisation in the wild. [deng:2019]. You can use it with two different backbones:
    • MobileNet: Fast and light-weighted model (achieves high FPS)
    • Resnet50: A medium-size model for better results, but slower.

Despite the availability of different implementations of these algorithms, there are some disadvantages we found when using them. So we create this project to offer the following features, in one package:

  • :star: Real-time face detection;
  • :star: Support for batch detection (useful for fast detection in multiple images and videos);
  • :star: Ease of use through python library or command-line app;
  • :star: Provide a unified interface to assign 'CPU' or 'GPU' devices;
  • :star: Multiple GPU's support;
  • :star: Automatic on-demand model weights download;
  • :star: Compatible with Windows, Linux, and macOS systems.

Installation

  1. You need to install PyTorch first (if you have a GPU, install PyTorch with CUDA support).

  2. Then fdet can be installed through pip:

pip install fdet

Python Library Usage

If you want to use fdet from python, just import it,

from  fdet import MTCNN, RetinaFace

and instantiate your desired detector, with its respective parameters:

  • MTCNN(thresholds, nms_thresholds, min_face_size, cuda_enable, cuda_devices)

    • thresholds (tuple, optional): The thresholds fo each MTCNN step [default: (0.6, 0.7, 0.8)]
    • nms_thresholds (tuple, optional): The NMS thresholds fo each MTCNN step [default: (0.7, 0.7, 0.7)]
    • min_face_size (float, optional): The minimum size of the face to detect, in pixels [default: 20.0].
    • cuda_enable (bool, optional): Indicates wheter CUDA, if available, should be used or not. If False, uses only CPU processing [default: True].
    • cuda_devices (list, optional): List of CUDA GPUs to be used. If None, uses all avaliable GPUs [default: None]. If cuda_enable is False, this parameter is ignored.
  • RetinaFace(backbone, threshold, nms_threshold, max_face_size, cuda_enable, cuda_devices)

    • backbone (str): The backbone model ['RESNET50' or 'MOBILENET'].
    • threshold (tuple, optional): The detection threshold [default: 0.8]
    • nms_threshold (tuple, optional): The NMS threshold [default: 0.4]
    • max_face_size (int, optional): The maximum size of the face to detect, in pixels [default: 1000].
    • cuda_enable (bool, optional): Indicates wheter CUDA, if available, should be used or not. If False, uses only CPU processing. [default: True].
    • cuda_devices (list, optional): List of CUDA GPUs to be used. If None, uses all avaliable GPUs. [default: None]. If cuda_enable is False, this parameter is ignored.

The detector classes listed above have two methods to perform the face detection:

Singe-Image Detection Example

The following example illustrates the ease of use of this library to detect faces in a single-image using MTCNN and to create an output image with all detected faces drawn.

>>> from fdet import io, MTCNN
>>>
>>> detector = MTCNN()
>>> image = io.read_as_rgb('example.jpg')
>>>
>>> detections = detector.detect(image)
>>> print(detections)
[{'box': [511, 47, 35, 45], 'confidence': 0.9999996423721313,
  'keypoints': {'left_eye': [517, 70], 'right_eye': [530, 65], 'nose': [520, 77],
                'mouth_left': [522, 87], 'mouth_right': [531, 83]}}]
>>>
>>> output_image = io.draw_detections(image, detections, color='white', thickness=5)
>>> io.save('output.jpg', output_image)

The detector returns a list of dict objects. Each dict contains three main keys:

  • 'box': The bounding box formatted as a list [x, y, width, height];
  • 'confidence': The probability for a bounding box to be matching a face;
  • 'keypoints': The five landmarks formatted into a dict with the keys 'left_eye', 'right_eye', 'nose', 'mouth_left', 'mouth_right'. Each keypoint is identified by a pixel position [x, y].

The io.read_as_rgb() is a wrapper for opencv cv2.imread() to ensure an RGB image and can be replaced by:

image = cv2.imread('example.jpg', cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

Batch Detection Example

The library is also capable of performing face detection on image batches, typically providing considerable speed-up. A batch should be structured as list of images (numpy arrays) of equal dimension. The returned detections list will have an additional first dimension corresponding to the batch size. Each image in the batch may have one or more faces detected.

In the following example, we detect faces in every frame of a video using batchs of 10 images.

>>> import cv2
>>> from fdet import io, RetinaFace
>>>
>>> BATCH_SIZE = 10
>>>
>>> detector = RetinaFace(backbone='MOBILENET', cuda_devices=[0,1])
>>> vid_cap = cv2.VideoCapture('path_to_video.mp4')
>>>
>>> video_face_detections = [] # list to store all video face detections
>>> image_buffer = [] # buffer to store the batch
>>>
>>> while True:
>>>
>>>     success, frame = vid_cap.read() # read the frame from video capture
>>>     if not success:
>>>         break # end of video
>>>
>>>     frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # convert to RGB
>>>     image_buffer.append(frame) # add frame to buffer
>>>
>>>     if len(image_buffer) == BATCH_SIZE: # if buffer is full, detect the batch
>>>         batch_detections = detector.batch_detect(image_buffer)
>>>         video_face_detections.extend(batch_detections)
>>>         image_buffer.clear() # clear the buffer
>>>
>>> if image_buffer: # checks if images remain in the buffer and detect it
>>>     batch_detections = detector.batch_detect(image_buffer)
>>>     video_face_detections.extend(batch_detections)

Command-line Usage

Terminal

Credits

The FDet was written heavily inspired by the other available implementations (see credits).

The current MTCNN version was implemented with the help of Davi Beltrão.

References

  • [zhang:2016]: Zhang, K., Zhang, Z., Li, Z. and Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10), 1499-1503. (link to paper)

  • [deng:2019]: Deng, J., Guo, J., Zhou, Y., Yu, J., Kotsia, I. and Zafeiriou, S. (2019). Retinaface: Single-stage dense face localisation in the wild. arXiv preprint arXiv:1905.00641. (link to paper)

License

MIT license

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fdet-0.2.1.tar.gz (26.5 kB view details)

Uploaded Source

Built Distribution

fdet-0.2.1-py3-none-any.whl (25.4 kB view details)

Uploaded Python 3

File details

Details for the file fdet-0.2.1.tar.gz.

File metadata

  • Download URL: fdet-0.2.1.tar.gz
  • Upload date:
  • Size: 26.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2

File hashes

Hashes for fdet-0.2.1.tar.gz
Algorithm Hash digest
SHA256 fc8645eff7b90661f16187da12a9ff24a73ce1fdb103ed500254dad9ce9aca11
MD5 225b30657323e16b03454af896261157
BLAKE2b-256 cf5f0a55d882ca91724c8ec83c725c73f0cb45fcef0235b97b1cbbc1050bfce0

See more details on using hashes here.

File details

Details for the file fdet-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: fdet-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 25.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2

File hashes

Hashes for fdet-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 dcd04e2658a0aafc52c61c289f354a20002e3ee48b33efcf4a8c86b59a917977
MD5 e112f9e0a4dbfde27df86e807413c117
BLAKE2b-256 108dff18917a2ef1c3d8f0596f18a6f81a451b23541ad9c436dd366e7e857ffa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page