Skip to main content

Estimate derivatives with finite differences

Project description

FDM: Finite Difference Methods

CI Coverage Status Latest Docs Code style: black

FDM estimates derivatives with finite differences. See also FiniteDifferences.jl.

Installation

FDM requires Python 3.6 or higher.

pip install fdm

Multivariate Derivatives

from fdm import gradient, jacobian, jvp, hvp

For the purpose of illustration, let us consider a quadratic function:

>>> a = np.random.randn(3, 3); a = a @ a.T
>>> a
array([[ 3.57224794,  0.22646662, -1.80432262],
       [ 0.22646662,  4.72596213,  3.46435663],
       [-1.80432262,  3.46435663,  3.70938152]])

>>> def f(x):
...     return 0.5 * x @ a @ x

Consider the following input value:

>>> x = np.array([1.0, 2.0, 3.0])

Gradients

>>> grad = gradient(f)
>>> grad(x)
array([-1.38778668, 20.07146076, 16.25253519])

>>> a @ x
array([-1.38778668, 20.07146076, 16.25253519])

Jacobians

>>> jac = jacobian(f)
>>> jac(x)
array([[-1.38778668, 20.07146076, 16.25253519]])

>>> a @ x
array([-1.38778668, 20.07146076, 16.25253519])

But jacobian also works for multi-valued functions.

>>> def f2(x):
...     return a @ x

>>> jac2 = jacobian(f2)
>>> jac2(x)
array([[ 3.57224794,  0.22646662, -1.80432262],
       [ 0.22646662,  4.72596213,  3.46435663],
       [-1.80432262,  3.46435663,  3.70938152]])

>>> a
array([[ 3.57224794,  0.22646662, -1.80432262],
       [ 0.22646662,  4.72596213,  3.46435663],
       [-1.80432262,  3.46435663,  3.70938152]])

Jacobian-Vector Products (Directional Derivatives)

In the scalar case, jvp computes directional derivatives:

>>> v = np.array([0.5, 0.6, 0.7])  # A direction

>>> dir_deriv = jvp(f, v)
>>> dir_deriv(x)
22.725757753354657

>>> np.sum(grad(x) * v)
22.72575775335481

In the multivariate case, jvp generalises to Jacobian-vector products:

>>> prod = jvp(f2, v)
>>> prod(x)
array([0.65897811, 5.37386023, 3.77301973])

>>> a @ v
array([0.65897811, 5.37386023, 3.77301973])

Hessian-Vector Products

>>> prod = hvp(f, v)
>>> prod(x)
array([[0.6589781 , 5.37386023, 3.77301973]])

>>> 0.5 * (a + a.T) @ v
array([0.65897811, 5.37386023, 3.77301973])

Scalar Derivatives

>>> from fdm import central_fdm

Let's try to estimate the first derivative of np.sin at 1 with a second-order method.

>>> central_fdm(order=2, deriv=1)(np.sin, 1) - np.cos(1)
-1.2914319613699377e-09

And let's try to estimate the second derivative of np.sin at 1 with a third-order method.

>>> central_fdm(order=3, deriv=2)(np.sin, 1) + np.sin(1)
1.6342919018086377e-08

Hm. Let's check the accuracy of this third-order method. The step size and accuracy of the method are computed upon calling FDM.estimate.

>>> central_fdm(order=3, deriv=2).estimate(np.sin, 1).acc
5.476137293912896e-06

We might want a little more accuracy. Let's check the accuracy of a fifth-order method.

>>> central_fdm(order=5, deriv=2).estimate(np.sin, 1).acc
7.343652562575157e-10

And let's estimate the second derivative of np.sin at 1 with a fifth-order method.

>>> central_fdm(order=5, deriv=2)(np.sin, 1) + np.sin(1)
-1.7121615236703747e-10

Hooray!

Finally, let us verify that increasing the order generally increases the accuracy.

>>> for i in range(3, 10):
...      print(central_fdm(order=i, deriv=2)(np.sin, 1) + np.sin(1))
1.6342919018086377e-08
8.604865264771888e-09
-1.7121615236703747e-10
8.558931341440257e-12
-2.147615418834903e-12
6.80566714095221e-13
-1.2434497875801753e-14

Testing Sensitivities in a Reverse-Mode Automatic Differentation Framework

Consider the function

def mul(a, b):
    return a * b

and its sensitivity

def s_mul(s_y, y, a, b):
    return s_y * b, a * s_y

The sensitivity s_mul takes in the sensitivity s_y of the output y, the output y, and the arguments of the function mul; and returns a tuple containing the sensitivities with respect to a and b. Then function check_sensitivity can be used to assert that the implementation of s_mul is correct:

>>> from fdm import check_sensitivity

>>> check_sensitivity(mul, s_mul, (2, 3))  # Test at arguments `2` and `3`.

Suppose that the implementation were wrong, for example

def s_mul_wrong(s_y, y, a, b):
    return s_y * b, b * s_y  # Used `b` instead of `a` for the second sensitivity!

Then check_sensitivity should throw an AssertionError:

>>> check_sensitivity(mul, s_mul, (2, 3))
AssertionError: Sensitivity of argument 2 of function "mul" did not match numerical estimate.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fdm-0.5.0.tar.gz (9.3 kB view details)

Uploaded Source

Built Distribution

fdm-0.5.0-py3-none-any.whl (10.5 kB view details)

Uploaded Python 3

File details

Details for the file fdm-0.5.0.tar.gz.

File metadata

  • Download URL: fdm-0.5.0.tar.gz
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for fdm-0.5.0.tar.gz
Algorithm Hash digest
SHA256 47876c8fe8aea4b374913594938cbcbd065a648d044fe8e287af7f320341ef39
MD5 f0a580c5948873526cd0e6ee76d701c4
BLAKE2b-256 3b073200eb57d6904253a84944cbdb8cfb69056fb3318d2ac2ca4722560f961e

See more details on using hashes here.

File details

Details for the file fdm-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: fdm-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 10.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for fdm-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cf2ce17abcc439cde3aaa8b59c1bfffa53875156c2d8dcdf1639de1a2b3c166c
MD5 05bcc3b28b920b3a5c3564f929715da9
BLAKE2b-256 e535294e2a694f0f29b69dd28c2cc4d6c16524c2c72f0102ab43846c2adf589f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page