Skip to main content

Exchange DataFeed Data Model client library for Python

Project description

FactSet

Exchange DataFeed Data Model client library for Python

API Version PyPi Apache-2 license

FactSet’s Real-Time market data products provide access to consolidated Real-Time and delayed global exchange data. Proprietary technology normalizes over 250 global venues, 18+ million instruments, and 150+ data fields. Asset types integrated include equities, futures, options, warrants, fixed income, mutual funds, ETFs, indices, commodities, and FX rates. Innovative technology ensures reliability and provides scalability that allows clients to make requests based on a symbol list or an exchange. Reduce development time by powering proprietary and third-party applications with exchange data from a unified data model.

The Real-Time Data Model API provides mappings for enumerations used in our Real-Time DataFeed products and should be used in conjunction with the DataFeed Data Model documentation available for each product.

The initial version of this API is limited to mapping tables for the product codes and exchanges only.

This Python package is automatically generated by the OpenAPI Generator project:

  • API version: 1.2.0
  • SDK version: 0.21.1
  • Build package: org.openapitools.codegen.languages.PythonClientCodegen

For more information, please visit https://developer.factset.com/contact

Requirements

  • Python >= 3.7

Installation

Poetry

poetry add fds.sdk.utils fds.sdk.ExchangeDataFeedDataModel==0.21.1

pip

pip install fds.sdk.utils fds.sdk.ExchangeDataFeedDataModel==0.21.1

Usage

  1. Generate authentication credentials.
  2. Setup Python environment.
    1. Install and activate python 3.7+. If you're using pyenv:

      pyenv install 3.9.7
      pyenv shell 3.9.7
      
    2. (optional) Install poetry.

  3. Install dependencies.
  4. Run the following:

[!IMPORTANT] The parameter variables defined below are just examples and may potentially contain non valid values. Please replace them with valid values.

Example Code

from fds.sdk.utils.authentication import ConfidentialClient

import fds.sdk.ExchangeDataFeedDataModel
from fds.sdk.ExchangeDataFeedDataModel.api import exchange_information_api
from fds.sdk.ExchangeDataFeedDataModel.models import *
from dateutil.parser import parse as dateutil_parser
from pprint import pprint

# See configuration.py for a list of all supported configuration parameters.

# Examples for each supported authentication method are below,
# choose one that satisfies your use case.

# (Preferred) OAuth 2.0: FactSetOAuth2
# See https://github.com/FactSet/enterprise-sdk#oauth-20
# for information on how to create the app-config.json file
#
# The confidential client instance should be reused in production environments.
# See https://github.com/FactSet/enterprise-sdk-utils-python#authentication
# for more information on using the ConfidentialClient class
configuration = fds.sdk.ExchangeDataFeedDataModel.Configuration(
    fds_oauth_client=ConfidentialClient('/path/to/app-config.json')
)

# Basic authentication: FactSetApiKey
# See https://github.com/FactSet/enterprise-sdk#api-key
# for information how to create an API key
# configuration = fds.sdk.ExchangeDataFeedDataModel.Configuration(
#     username='USERNAME-SERIAL',
#     password='API-KEY'
# )

# Enter a context with an instance of the API client
with fds.sdk.ExchangeDataFeedDataModel.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = exchange_information_api.ExchangeInformationApi(api_client)
    product_code = [9001,10001,10010] # [int] | Allows filtering of specific product codes in the response. (optional)
    exchange_code = [14034,36,25] # [int] | Allows filtering of specific exchange codes in the response. (optional)
    iso_code = ["USA","LON","PAR"] # [str] | Allows filtering on specific ISO code in the response. (optional)
    format = "json" # str | The format of the output file. (optional)

    try:
        # Request metadata for covered Real-Time market data venues at FactSet.
        # example passing only required values which don't have defaults set
        # and optional values
        api_response = api_instance.get_exchanges(product_code=product_code, exchange_code=exchange_code, iso_code=iso_code, format=format)

        pprint(api_response)
    except fds.sdk.ExchangeDataFeedDataModel.ApiException as e:
        print("Exception when calling ExchangeInformationApi->get_exchanges: %s\n" % e)

    # # Get response, http status code and response headers
    # try:
    #     # Request metadata for covered Real-Time market data venues at FactSet.
    #     api_response, http_status_code, response_headers = api_instance.get_exchanges_with_http_info(product_code=product_code, exchange_code=exchange_code, iso_code=iso_code, format=format)


    #     pprint(api_response)
    #     pprint(http_status_code)
    #     pprint(response_headers)
    # except fds.sdk.ExchangeDataFeedDataModel.ApiException as e:
    #     print("Exception when calling ExchangeInformationApi->get_exchanges: %s\n" % e)

    # # Get response asynchronous
    # try:
    #     # Request metadata for covered Real-Time market data venues at FactSet.
    #     async_result = api_instance.get_exchanges_async(product_code=product_code, exchange_code=exchange_code, iso_code=iso_code, format=format)
    #     api_response = async_result.get()


    #     pprint(api_response)
    # except fds.sdk.ExchangeDataFeedDataModel.ApiException as e:
    #     print("Exception when calling ExchangeInformationApi->get_exchanges: %s\n" % e)

    # # Get response, http status code and response headers asynchronous
    # try:
    #     # Request metadata for covered Real-Time market data venues at FactSet.
    #     async_result = api_instance.get_exchanges_with_http_info_async(product_code=product_code, exchange_code=exchange_code, iso_code=iso_code, format=format)
    #     api_response, http_status_code, response_headers = async_result.get()


    #     pprint(api_response)
    #     pprint(http_status_code)
    #     pprint(response_headers)
    # except fds.sdk.ExchangeDataFeedDataModel.ApiException as e:
    #     print("Exception when calling ExchangeInformationApi->get_exchanges: %s\n" % e)

Using Pandas

To convert an API response to a Pandas DataFrame, it is necessary to transform it first to a dictionary.

import pandas as pd

response_dict = api_response.to_dict()['data']

simple_json_response = pd.DataFrame(response_dict)
nested_json_response = pd.json_normalize(response_dict)

Debugging

The SDK uses the standard library logging module.

Setting debug to True on an instance of the Configuration class sets the log-level of related packages to DEBUG and enables additional logging in Pythons HTTP Client.

Note: This prints out sensitive information (e.g. the full request and response). Use with care.

import logging
import fds.sdk.ExchangeDataFeedDataModel

logging.basicConfig(level=logging.DEBUG)

configuration = fds.sdk.ExchangeDataFeedDataModel.Configuration(...)
configuration.debug = True

Configure a Proxy

You can pass proxy settings to the Configuration class:

  • proxy: The URL of the proxy to use.
  • proxy_headers: a dictionary to pass additional headers to the proxy (e.g. Proxy-Authorization).
import fds.sdk.ExchangeDataFeedDataModel

configuration = fds.sdk.ExchangeDataFeedDataModel.Configuration(
    # ...
    proxy="http://secret:password@localhost:5050",
    proxy_headers={
        "Custom-Proxy-Header": "Custom-Proxy-Header-Value"
    }
)

Custom SSL Certificate

TLS/SSL certificate verification can be configured with the following Configuration parameters:

  • ssl_ca_cert: a path to the certificate to use for verification in PEM format.
  • verify_ssl: setting this to False disables the verification of certificates. Disabling the verification is not recommended, but it might be useful during local development or testing.
import fds.sdk.ExchangeDataFeedDataModel

configuration = fds.sdk.ExchangeDataFeedDataModel.Configuration(
    # ...
    ssl_ca_cert='/path/to/ca.pem'
)

Request Retries

In case the request retry behaviour should be customized, it is possible to pass a urllib3.Retry object to the retry property of the Configuration.

from urllib3 import Retry
import fds.sdk.ExchangeDataFeedDataModel

configuration = fds.sdk.ExchangeDataFeedDataModel.Configuration(
    # ...
)

configuration.retries = Retry(total=3, status_forcelist=[500, 502, 503, 504])

Documentation for API Endpoints

All URIs are relative to https://api.factset.com/rtdatamodel/v1

Class Method HTTP request Description
ExchangeInformationApi get_exchanges GET /exchanges Request metadata for covered Real-Time market data venues at FactSet.
ProductCodesApi get_products GET /products Request the enumeration table for FactSet product codes.

Documentation For Models

Documentation For Authorization

FactSetApiKey

  • Type: HTTP basic authentication

FactSetOAuth2

  • Type: OAuth
  • Flow: application
  • Authorization URL:
  • Scopes: N/A

Notes for Large OpenAPI documents

If the OpenAPI document is large, imports in fds.sdk.ExchangeDataFeedDataModel.apis and fds.sdk.ExchangeDataFeedDataModel.models may fail with a RecursionError indicating the maximum recursion limit has been exceeded. In that case, there are a couple of solutions:

Solution 1: Use specific imports for apis and models like:

  • from fds.sdk.ExchangeDataFeedDataModel.api.default_api import DefaultApi
  • from fds.sdk.ExchangeDataFeedDataModel.model.pet import Pet

Solution 2: Before importing the package, adjust the maximum recursion limit as shown below:

import sys
sys.setrecursionlimit(1500)
import fds.sdk.ExchangeDataFeedDataModel
from fds.sdk.ExchangeDataFeedDataModel.apis import *
from fds.sdk.ExchangeDataFeedDataModel.models import *

Contributing

Please refer to the contributing guide.

Copyright

Copyright 2026 FactSet Research Systems Inc

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fds_sdk_exchangedatafeeddatamodel-0.21.1.tar.gz (54.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

File details

Details for the file fds_sdk_exchangedatafeeddatamodel-0.21.1.tar.gz.

File metadata

File hashes

Hashes for fds_sdk_exchangedatafeeddatamodel-0.21.1.tar.gz
Algorithm Hash digest
SHA256 d7060395863ec099a723308be3d592580e78d542f79bfdb99047f096bf13025f
MD5 2473f19836127c42f7ac57c09f7f0b2d
BLAKE2b-256 ab88efc9fad3fc309ee5993988e5f174934ae645902293a0a3ce40cc94114476

See more details on using hashes here.

File details

Details for the file fds_sdk_exchangedatafeeddatamodel-0.21.1-py3-none-any.whl.

File metadata

File hashes

Hashes for fds_sdk_exchangedatafeeddatamodel-0.21.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ac70267d9a9701e3430387bb4b46dfd3a7efc92dcf3847c6e68588962310be6f
MD5 88c2246e9f6def0265ed95dce3f45f24
BLAKE2b-256 0e7ebc3d4e0175bf19e27be31c418365ca08ce616fafd71faa3aa2d18b5ce656

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page