Skip to main content

Quant Engine client library for Python

Project description

FactSet

Quant Engine client library for Python

API Version PyPi Apache-2 license

Allow clients to fetch Analytics through APIs.

This Python package is automatically generated by the OpenAPI Generator project:

  • API version: 3.11.0
  • SDK version: 1.0.6
  • Build package: org.openapitools.codegen.languages.PythonClientCodegen

For more information, please visit https://developer.factset.com/contact

Requirements

  • Python >= 3.7

Installation

Poetry

poetry add fds.sdk.utils fds.sdk.QuantEngine==1.0.6

pip

pip install fds.sdk.utils fds.sdk.QuantEngine==1.0.6

Usage

  1. Generate authentication credentials.
  2. Setup Python environment.
    1. Install and activate python 3.7+. If you're using pyenv:

      pyenv install 3.9.7
      pyenv shell 3.9.7
      
    2. (optional) Install poetry.

  3. Install dependencies.
  4. Run the following:

[!IMPORTANT] The parameter variables defined below are just examples and may potentially contain non valid values. Please replace them with valid values.

Example Code

from fds.sdk.utils.authentication import ConfidentialClient

import fds.sdk.QuantEngine
from fds.sdk.QuantEngine.api import quant_calculations_api
from fds.sdk.QuantEngine.models import *
from dateutil.parser import parse as dateutil_parser
from pprint import pprint

# See configuration.py for a list of all supported configuration parameters.

# Examples for each supported authentication method are below,
# choose one that satisfies your use case.

# (Preferred) OAuth 2.0: FactSetOAuth2
# See https://github.com/FactSet/enterprise-sdk#oauth-20
# for information on how to create the app-config.json file
#
# The confidential client instance should be reused in production environments.
# See https://github.com/FactSet/enterprise-sdk-utils-python#authentication
# for more information on using the ConfidentialClient class
configuration = fds.sdk.QuantEngine.Configuration(
    fds_oauth_client=ConfidentialClient('/path/to/app-config.json')
)

# Basic authentication: FactSetApiKey
# See https://github.com/FactSet/enterprise-sdk#api-key
# for information how to create an API key
# configuration = fds.sdk.QuantEngine.Configuration(
#     username='USERNAME-SERIAL',
#     password='API-KEY'
# )

# Enter a context with an instance of the API client
with fds.sdk.QuantEngine.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = quant_calculations_api.QuantCalculationsApi(api_client)
    id = "id_example" # str | from url, provided from the location header in the Create and Run Quant calculation endpoint

    try:
        # Cancel Quant calculation by id
        # example passing only required values which don't have defaults set
        api_instance.cancel_calculation_by_id(id)

    except fds.sdk.QuantEngine.ApiException as e:
        print("Exception when calling QuantCalculationsApi->cancel_calculation_by_id: %s\n" % e)

    # # Get response, http status code and response headers
    # try:
    #     # Cancel Quant calculation by id
    #     api_response, http_status_code, response_headers = api_instance.cancel_calculation_by_id_with_http_info(id)

    # except fds.sdk.QuantEngine.ApiException as e:
    #     print("Exception when calling QuantCalculationsApi->cancel_calculation_by_id: %s\n" % e)

    # # Get response asynchronous
    # try:
    #     # Cancel Quant calculation by id
    #     async_result = api_instance.cancel_calculation_by_id_async(id)
    # except fds.sdk.QuantEngine.ApiException as e:
    #     print("Exception when calling QuantCalculationsApi->cancel_calculation_by_id: %s\n" % e)

    # # Get response, http status code and response headers asynchronous
    # try:
    #     # Cancel Quant calculation by id
    #     async_result = api_instance.cancel_calculation_by_id_with_http_info_async(id)
    # except fds.sdk.QuantEngine.ApiException as e:
    #     print("Exception when calling QuantCalculationsApi->cancel_calculation_by_id: %s\n" % e)

Using Pandas

To convert an API response to a Pandas DataFrame, it is necessary to transform it first to a dictionary.

import pandas as pd

response_dict = api_response.to_dict()['data']

simple_json_response = pd.DataFrame(response_dict)
nested_json_response = pd.json_normalize(response_dict)

Debugging

The SDK uses the standard library logging module.

Setting debug to True on an instance of the Configuration class sets the log-level of related packages to DEBUG and enables additional logging in Pythons HTTP Client.

Note: This prints out sensitive information (e.g. the full request and response). Use with care.

import logging
import fds.sdk.QuantEngine

logging.basicConfig(level=logging.DEBUG)

configuration = fds.sdk.QuantEngine.Configuration(...)
configuration.debug = True

Configure a Proxy

You can pass proxy settings to the Configuration class:

  • proxy: The URL of the proxy to use.
  • proxy_headers: a dictionary to pass additional headers to the proxy (e.g. Proxy-Authorization).
import fds.sdk.QuantEngine

configuration = fds.sdk.QuantEngine.Configuration(
    # ...
    proxy="http://secret:password@localhost:5050",
    proxy_headers={
        "Custom-Proxy-Header": "Custom-Proxy-Header-Value"
    }
)

Custom SSL Certificate

TLS/SSL certificate verification can be configured with the following Configuration parameters:

  • ssl_ca_cert: a path to the certificate to use for verification in PEM format.
  • verify_ssl: setting this to False disables the verification of certificates. Disabling the verification is not recommended, but it might be useful during local development or testing.
import fds.sdk.QuantEngine

configuration = fds.sdk.QuantEngine.Configuration(
    # ...
    ssl_ca_cert='/path/to/ca.pem'
)

Request Retries

In case the request retry behaviour should be customized, it is possible to pass a urllib3.Retry object to the retry property of the Configuration.

from urllib3 import Retry
import fds.sdk.QuantEngine

configuration = fds.sdk.QuantEngine.Configuration(
    # ...
)

configuration.retries = Retry(total=3, status_forcelist=[500, 502, 503, 504])

Documentation for API Endpoints

All URIs are relative to https://api.factset.com/analytics/engines/quant/v3

Class Method HTTP request Description
QuantCalculationsApi cancel_calculation_by_id DELETE /calculations/{id} Cancel Quant calculation by id
QuantCalculationsApi get_all_calculations GET /calculations Get all calculations
QuantCalculationsApi get_calculation_parameters GET /calculations/{id} Get Quant Engine calculation parameters by id
QuantCalculationsApi get_calculation_status_by_id GET /calculations/{id}/status Get Quant Engine calculation status by id
QuantCalculationsApi get_calculation_unit_info_by_id GET /calculations/{id}/units/{unitId}/info Get Quant Engine calculation metadata information by id
QuantCalculationsApi get_calculation_unit_result_by_id GET /calculations/{id}/units/{unitId}/result Get Quant Engine calculation result by id
QuantCalculationsApi post_and_calculate POST /calculations Create and Run Quant Engine calculation
QuantCalculationsApi put_and_calculate PUT /calculations/{id} Create or update Quant Engine calculation and run it.

Documentation For Models

Documentation For Authorization

FactSetApiKey

  • Type: HTTP basic authentication

FactSetOAuth2

  • Type: OAuth
  • Flow: application
  • Authorization URL:
  • Scopes: N/A

Notes for Large OpenAPI documents

If the OpenAPI document is large, imports in fds.sdk.QuantEngine.apis and fds.sdk.QuantEngine.models may fail with a RecursionError indicating the maximum recursion limit has been exceeded. In that case, there are a couple of solutions:

Solution 1: Use specific imports for apis and models like:

  • from fds.sdk.QuantEngine.api.default_api import DefaultApi
  • from fds.sdk.QuantEngine.model.pet import Pet

Solution 2: Before importing the package, adjust the maximum recursion limit as shown below:

import sys
sys.setrecursionlimit(1500)
import fds.sdk.QuantEngine
from fds.sdk.QuantEngine.apis import *
from fds.sdk.QuantEngine.models import *

Contributing

Please refer to the contributing guide.

Copyright

Copyright 2022 FactSet Research Systems Inc

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fds.sdk.QuantEngine-1.0.6.tar.gz (67.8 kB view details)

Uploaded Source

Built Distribution

fds.sdk.QuantEngine-1.0.6-py3-none-any.whl (160.5 kB view details)

Uploaded Python 3

File details

Details for the file fds.sdk.QuantEngine-1.0.6.tar.gz.

File metadata

  • Download URL: fds.sdk.QuantEngine-1.0.6.tar.gz
  • Upload date:
  • Size: 67.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.10.0 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.20 tqdm/4.64.1 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.15

File hashes

Hashes for fds.sdk.QuantEngine-1.0.6.tar.gz
Algorithm Hash digest
SHA256 96f181e9c3d890809e0ff66e4fe354ebdfeef583f09db30479e2015e5a1e3c83
MD5 c0526e410280b9c18c3df1732b9be24b
BLAKE2b-256 4efba156aa0815bd3990811b1d9d42f2c661cc8152b3a99a4572a8f1dafcdb37

See more details on using hashes here.

File details

Details for the file fds.sdk.QuantEngine-1.0.6-py3-none-any.whl.

File metadata

  • Download URL: fds.sdk.QuantEngine-1.0.6-py3-none-any.whl
  • Upload date:
  • Size: 160.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.10.0 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.20 tqdm/4.64.1 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.15

File hashes

Hashes for fds.sdk.QuantEngine-1.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 46c0d742dd971b2d43b83128f6ce684dbd0b028282adab0293c23c01a9f1fe2d
MD5 712e5da5a89ed5c14b6f1ec2ee17be75
BLAKE2b-256 7022fe1785afa6207c98a8b756738f350d15e9c6fd4f9b288d2361674fc08779

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page