Skip to main content

Quantitative Research Environment client library for Python

Project description

FactSet

Quantitative Research Environment client library for Python

PyPi Apache-2 license

TBD

This Python package is automatically generated by the OpenAPI Generator project:

  • API version: 0.0.0
  • Package version: 0.21.6
  • Build package: org.openapitools.codegen.languages.PythonClientCodegen

Requirements

  • Python >= 3.7

Installation

Poetry

poetry add fds.sdk.utils fds.sdk.QuantitativeResearchEnvironment

pip

pip install fds.sdk.utils fds.sdk.QuantitativeResearchEnvironment

Usage

  1. Generate authentication credentials.
  2. Setup Python environment.
    1. Install and activate python 3.7+. If you're using pyenv:

      pyenv install 3.9.7
      pyenv shell 3.9.7
      
    2. (optional) Install poetry.

  3. Install dependencies.
  4. Run the following:
from fds.sdk.utils.authentication import ConfidentialClient

import fds.sdk.QuantitativeResearchEnvironment
from fds.sdk.QuantitativeResearchEnvironment.api import calculations_api
from fds.sdk.QuantitativeResearchEnvironment.models import *
from dateutil.parser import parse as dateutil_parser
from pprint import pprint

# See configuration.py for a list of all supported configuration parameters.

# Examples for each supported authentication method are below,
# choose one that satisfies your use case.

# (Preferred) OAuth 2.0: FactSetOAuth2
# See https://github.com/FactSet/enterprise-sdk#oauth-20
# for information on how to create the app-config.json file
# See https://github.com/FactSet/enterprise-sdk-utils-python#authentication
# for more information on using the ConfidentialClient class
configuration = fds.sdk.QuantitativeResearchEnvironment.Configuration(
    fds_oauth_client=ConfidentialClient('/path/to/app-config.json')
)

# Basic authentication: FactSetApiKey
# See https://github.com/FactSet/enterprise-sdk#api-key
# for information how to create an API key
# configuration = fds.sdk.QuantitativeResearchEnvironment.Configuration(
#     username='USERNAME-SERIAL',
#     password='API-KEY'
# )

# Enter a context with an instance of the API client
with fds.sdk.QuantitativeResearchEnvironment.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = calculations_api.CalculationsApi(api_client)
    # NOTE: The parameter variable defined below is just an example and may potentially contain non valid values. So please replace this with valid values.
    id = "id_example" # str | From url, provided by location header or response body in the calculation start endpoint

    try:
        # Get calculation status by id
        # example passing only required values which don't have defaults set
        api_response = api_instance.analytics_quant_qre_v1_calculations_id_get(id)

        pprint(api_response)
    except fds.sdk.QuantitativeResearchEnvironment.ApiException as e:
        print("Exception when calling CalculationsApi->analytics_quant_qre_v1_calculations_id_get: %s\n" % e)

    # # Get response, http status code and response headers
    # try:
    #     # Get calculation status by id
    #     api_response, http_status_code, response_headers = api_instance.analytics_quant_qre_v1_calculations_id_get_with_http_info(id)


    #     pprint(api_response)
    #     pprint(http_status_code)
    #     pprint(response_headers)
    # except fds.sdk.QuantitativeResearchEnvironment.ApiException as e:
    #     print("Exception when calling CalculationsApi->analytics_quant_qre_v1_calculations_id_get: %s\n" % e)

    # # Get response asynchronous
    # try:
    #     # Get calculation status by id
    #     async_result = api_instance.analytics_quant_qre_v1_calculations_id_get_async(id)
    #     api_response = async_result.get()


    #     pprint(api_response)
    # except fds.sdk.QuantitativeResearchEnvironment.ApiException as e:
    #     print("Exception when calling CalculationsApi->analytics_quant_qre_v1_calculations_id_get: %s\n" % e)

    # # Get response, http status code and response headers asynchronous
    # try:
    #     # Get calculation status by id
    #     async_result = api_instance.analytics_quant_qre_v1_calculations_id_get_with_http_info_async(id)
    #     api_response, http_status_code, response_headers = async_result.get()


    #     pprint(api_response)
    #     pprint(http_status_code)
    #     pprint(response_headers)
    # except fds.sdk.QuantitativeResearchEnvironment.ApiException as e:
    #     print("Exception when calling CalculationsApi->analytics_quant_qre_v1_calculations_id_get: %s\n" % e)

Using Pandas

To convert an API response to a Pandas DataFrame, it is necessary to transform it first to a dictionary.

import pandas as pd

response_dict = api_response.to_dict()['data']

simple_json_response = pd.DataFrame(response_dict)
nested_json_response = pd.json_normalize(response_dict)

Debugging

The SDK uses the standard library logging module.

Setting debug to True on an instance of the Configuration class sets the log-level of related packages to DEBUG and enables additional logging in Pythons HTTP Client.

Note: This prints out sensitive information (e.g. the full request and response). Use with care.

import logging
import fds.sdk.QuantitativeResearchEnvironment

logging.basicConfig(level=logging.DEBUG)

configuration = fds.sdk.QuantitativeResearchEnvironment.Configuration(...)
configuration.debug = True

Configure a Proxy

You can pass proxy settings to the Configuration class:

  • proxy: The URL of the proxy to use.
  • proxy_headers: a dictionary to pass additional headers to the proxy (e.g. Proxy-Authorization).
import fds.sdk.QuantitativeResearchEnvironment

configuration = fds.sdk.QuantitativeResearchEnvironment.Configuration(
    # ...
    proxy="http://secret:password@localhost:5050",
    proxy_headers={
        "Custom-Proxy-Header": "Custom-Proxy-Header-Value"
    }
)

Custom SSL Certificate

TLS/SSL certificate verification can be configured with the following Configuration parameters:

  • ssl_ca_cert: a path to the certificate to use for verification in PEM format.
  • verify_ssl: setting this to False disables the verification of certificates. Disabling the verification is not recommended, but it might be useful during local development or testing.
import fds.sdk.QuantitativeResearchEnvironment

configuration = fds.sdk.QuantitativeResearchEnvironment.Configuration(
    # ...
    ssl_ca_cert='/path/to/ca.pem'
)

Documentation for API Endpoints

All URIs are relative to https://api.factset.com

Class Method HTTP request Description
CalculationsApi analytics_quant_qre_v1_calculations_id_get GET /analytics/quant/qre/v1/calculations/{id} Get calculation status by id
CalculationsApi analytics_quant_qre_v1_calculations_id_log_get GET /analytics/quant/qre/v1/calculations/{id}/log Get calculation log for a specific calculation
CalculationsApi analytics_quant_qre_v1_calculations_id_output_get GET /analytics/quant/qre/v1/calculations/{id}/output Get calculation output for a specific calculation
CalculationsApi analytics_quant_qre_v1_calculations_post POST /analytics/quant/qre/v1/calculations Starts a new script calculation
FilesApi analytics_quant_qre_v1_files_server_file_post POST /analytics/quant/qre/v1/files/{server}/{file} Starts a file upload
FilesApi analytics_quant_qre_v1_files_uploads_id_get GET /analytics/quant/qre/v1/files/uploads/{id} Get upload status by id

Documentation For Models

Documentation For Authorization

FactSetApiKey

  • Type: HTTP basic authentication

FactSetOAuth2

  • Type: OAuth
  • Flow: application
  • Authorization URL:
  • Scopes: N/A

Notes for Large OpenAPI documents

If the OpenAPI document is large, imports in fds.sdk.QuantitativeResearchEnvironment.apis and fds.sdk.QuantitativeResearchEnvironment.models may fail with a RecursionError indicating the maximum recursion limit has been exceeded. In that case, there are a couple of solutions:

Solution 1: Use specific imports for apis and models like:

  • from fds.sdk.QuantitativeResearchEnvironment.api.default_api import DefaultApi
  • from fds.sdk.QuantitativeResearchEnvironment.model.pet import Pet

Solution 2: Before importing the package, adjust the maximum recursion limit as shown below:

import sys
sys.setrecursionlimit(1500)
import fds.sdk.QuantitativeResearchEnvironment
from fds.sdk.QuantitativeResearchEnvironment.apis import *
from fds.sdk.QuantitativeResearchEnvironment.models import *

Contributing

Please refer to the contributing guide.

Copyright

Copyright 2022 FactSet Research Systems Inc

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file fds.sdk.QuantitativeResearchEnvironment-0.21.6-py3-none-any.whl.

File metadata

  • Download URL: fds.sdk.QuantitativeResearchEnvironment-0.21.6-py3-none-any.whl
  • Upload date:
  • Size: 59.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.16 tqdm/4.64.1 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.15

File hashes

Hashes for fds.sdk.QuantitativeResearchEnvironment-0.21.6-py3-none-any.whl
Algorithm Hash digest
SHA256 b111213f9274fddcaf61f7e343f4085a9accf7bbda4db1fa317d600467a7b963
MD5 0b48618b767684cd54536373a6a10670
BLAKE2b-256 07f1bb9f43be3977319af6ccee0f7287355f0ba880d54d6a7691b15dc31e293d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page