Skip to main content

Sensitivity analysis of chaotic simulations

Project description

![Travis CI](https://travis-ci.org/qiqi/fds.svg?branch=master)

### Download and use

#### Using git ` git clone https://github.com/qiqi/fds.git ` Then add the directory to

### Tutorials

  • [First example – Van der Pol oscillator in Python](docs/tutorials/vanderpol_python.md)
  • [Lorenz attractor in C](docs/tutorials/lorenz_c.md)
  • [Lorenz 96 in MPI and C](docs/tutorials/lorenz96_mpi.md)

### Guides - [Chaos and statistical convergence](docs/guides/statistics.md) - [Lyapunov exponents and time segmentation](docs/guides/lyapunov.md) - [Save and restart](docs/guides/save_restart.md)

### Reference - [The least squares shadowing algorithm](docs/ref/lss_algorithm.md) - [Function reference](docs/ref/function_ref.md)

  • [License](LICENSE.md)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for fds, version 0.0.2.dev1
Filename, size File type Python version Upload date Hashes
Filename, size fds-0.0.2.dev1-py2.py3-none-any.whl (6.8 kB) File type Wheel Python version py2.py3 Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page