Skip to main content

Feather Helper is a concise interface to cache numpy arrays and pandas dataframes.

Project description

Feather Helper

Feather Helper is a concise interface to cache and load numpy arrays and pandas dataframes. I use it with Pandoctools/Knitty.

Contents

Install

Via conda:

conda install -c defaults -c conda-forge featherhelper

Via pip:

pip install featherhelper

Usage example

import pandas as pd
import numpy as np
import featherhelper as fh
fh.setdir("~/feather/mydoc")  # (optional)
# fh.exc(1, 2)  # force raise exceptions for names (optional)

# %%
fh.name(1)  # can also be fh.name('id1'), default is 'default', 1 is the same as '1'
try:
    # raise fh.Err  # (optional)
    df, A, B = fh.pull()  # control length can be set: fh.pull(N)
except fh.Err:
    # calculate:
    print('push')  
    df = pd.DataFrame(np.random.random(16).reshape(4, 4))
    A = df.values
    B = np.random.random(16 * 3).reshape(4, 2, 2, 3)
    #
    fh.push(df, A, B)

print(df, '\n', A, '\n', B)

A shorter example:

import numpy as np
import featherhelper as fh
# fh.exc()

# %%
try:
    A = fh.pull()
except fh.Err:
    A = np.random.random(16).reshape(4, 4)
    fh.push(A)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for featherhelper, version 0.0.5
Filename, size File type Python version Upload date Hashes
Filename, size featherhelper-0.0.5.tar.gz (20.4 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page